
1/18

Automatic Security Analyses of Network
Protocols with Tamarin-Prover

Introductory Talk

Eike Stadtländer

May 17, 2018

2/18

Outline

Motivation

Tamarin-Prover
Overview
Language and Environment State
Demo

Goals for the Lab

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1

⇒
√

−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1

⇒
√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1.

⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.

3/18

The Thing with Proofs

Consider the following “proof”:

−1

1
=

1

−1
⇒

√
−1

1
=

√
1

−1
⇒

√
−1√
1

=

√
1√
−1

⇒ i
1
=

1

i

⇒ −1 = i2 = i
i = 1

Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify for humans, at least.

4/18

Experts on Security Proofs1

• “In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor. [...] game-playing may play a role in the answer.”
Bellare and Rogaway 2004

• “We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect).”
Halevi 2005

1Slide inspired by Barthe (2014)

4/18

Experts on Security Proofs1

• “In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor. [...] game-playing may play a role in the answer.”
Bellare and Rogaway 2004

• “We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect).”
Halevi 2005

1Slide inspired by Barthe (2014)

4/18

Experts on Security Proofs1

• “In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor. [...] game-playing may play a role in the answer.”
Bellare and Rogaway 2004

• “We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect).”
Halevi 2005

1Slide inspired by Barthe (2014)

5/18

The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that

• can verify a proof
• can complete a partial proof
• can find a proof
• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.

5/18

The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that
• can verify a proof

• can complete a partial proof
• can find a proof
• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.

5/18

The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that
• can verify a proof
• can complete a partial proof

• can find a proof
• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.

5/18

The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that
• can verify a proof
• can complete a partial proof
• can find a proof

• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.

5/18

The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that
• can verify a proof
• can complete a partial proof
• can find a proof
• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.

5/18

The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that
• can verify a proof
• can complete a partial proof
• can find a proof
• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq

• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq

• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory

• Univalent Foundations of Mathematics, Vladimir Voevodsky
• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...

• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover
• based on constraint logic

• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover
• based on constraint logic
• symbolic analysis

• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”
(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover
• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

6/18

Automatic Provers - A Status Quo

• Mathematics: Coq
• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover
• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers

7/18

Tamarin

Brocken Inaglory, edited by Fir0002, edited by Brocken Inaglory
(https://commons.wikimedia.org/wiki/File:Tamarin_portrait_2_edit3.jpg)

https://creativecommons.org/licenses/by-sa/4.0/legalcode

8/18

The Cryptographer’s Wish List

Tamarin-Prover can

7 verify a proof
? complete a partial proof
3 find a valid proof
3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.

8/18

The Cryptographer’s Wish List

Tamarin-Prover can
7 verify a proof

? complete a partial proof
3 find a valid proof
3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.

8/18

The Cryptographer’s Wish List

Tamarin-Prover can
7 verify a proof
? complete a partial proof

3 find a valid proof
3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.

8/18

The Cryptographer’s Wish List

Tamarin-Prover can
7 verify a proof
? complete a partial proof
3 find a valid proof

3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.

8/18

The Cryptographer’s Wish List

Tamarin-Prover can
7 verify a proof
? complete a partial proof
3 find a valid proof
3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.

8/18

The Cryptographer’s Wish List

Tamarin-Prover can
7 verify a proof
? complete a partial proof
3 find a valid proof
3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata

• etc.

During execution, the state of Tamarin is a multiset of facts.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy.

(stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata

• etc.

During execution, the state of Tamarin is a multiset of facts.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata

• etc.

During execution, the state of Tamarin is a multiset of facts.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata

• etc.

During execution, the state of Tamarin is a multiset of facts.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata

• etc.

During execution, the state of Tamarin is a multiset of facts.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata
• etc.

During execution, the state of Tamarin is a multiset of facts.

9/18

The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata
• etc.

During execution, the state of Tamarin is a multiset of facts.

10/18

The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element
m messages, e.g. encrypted data, plaintexts

~x random variables, e.g. nonces, private keys
$S publicly known variables, e.g. server identity
#i temporal variable, e.g. to determine the order in

which events happened

10/18

The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element

m messages, e.g. encrypted data, plaintexts
~x random variables, e.g. nonces, private keys
$S publicly known variables, e.g. server identity
#i temporal variable, e.g. to determine the order in

which events happened

10/18

The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element
m messages, e.g. encrypted data, plaintexts

~x random variables, e.g. nonces, private keys
$S publicly known variables, e.g. server identity
#i temporal variable, e.g. to determine the order in

which events happened

10/18

The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element
m messages, e.g. encrypted data, plaintexts

~x random variables, e.g. nonces, private keys

$S publicly known variables, e.g. server identity
#i temporal variable, e.g. to determine the order in

which events happened

10/18

The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element
m messages, e.g. encrypted data, plaintexts

~x random variables, e.g. nonces, private keys
$S publicly known variables, e.g. server identity

#i temporal variable, e.g. to determine the order in
which events happened

10/18

The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element
m messages, e.g. encrypted data, plaintexts

~x random variables, e.g. nonces, private keys
$S publicly known variables, e.g. server identity
#i temporal variable, e.g. to determine the order in

which events happened

11/18

The Language of Tamarin-Prover
Rules

rule RuleIdentifier:
[Premise Facts]
--[Action Facts]->

can be abbreviated by -->

[Conclusion Facts]

The facts In(...) and Out(...) represent messages received or
sent over an unprotected channel, respectively.
The fact Fr(...) generates fresh variables.

11/18

The Language of Tamarin-Prover
Rules

rule RuleIdentifier:
[Premise Facts]
--[Action Facts]-> # can be abbreviated by -->
[Conclusion Facts]

The facts In(...) and Out(...) represent messages received or
sent over an unprotected channel, respectively.
The fact Fr(...) generates fresh variables.

11/18

The Language of Tamarin-Prover
Rules

rule RuleIdentifier:
let

key = value
...

in
[Premise Facts]
--[Action Facts]-> # can be abbreviated by -->
[Conclusion Facts]

The facts In(...) and Out(...) represent messages received or
sent over an unprotected channel, respectively.
The fact Fr(...) generates fresh variables.

11/18

The Language of Tamarin-Prover
Rules

rule RuleIdentifier:
let

key = value
...

in
[Premise Facts]
--[Action Facts]-> # can be abbreviated by -->
[Conclusion Facts]

The facts In(...) and Out(...) represent messages received or
sent over an unprotected channel, respectively.

The fact Fr(...) generates fresh variables.

11/18

The Language of Tamarin-Prover
Rules

rule RuleIdentifier:
let

key = value
...

in
[Premise Facts]
--[Action Facts]-> # can be abbreviated by -->
[Conclusion Facts]

The facts In(...) and Out(...) represent messages received or
sent over an unprotected channel, respectively.
The fact Fr(...) generates fresh variables.

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):

12/18

State of the Environment I
Create Something from Nothing

Trace:

RuleConstant, RuleConstant, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant

, RuleConstant, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):
• Fact('a')

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant

, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):
• Fact('a')
• Fact('a')

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant

, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):
• Fact('a')
• Fact('a')

12/18

State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant, RuleConsumer

rule RuleConstant:
[] --> [Fact('a')]

rule RuleConsumer:
[Fact('a')] --> [NewFact('b')]

State
(multiset of facts):
• Fact('a')
• NewFact('b')

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).

• Cryptographic primitives are handled symbolically or as a
black-box.

• Complete control over the network: sending, receiving
messages is done by the attacker.

• Usually, access to a reveal oracle

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker.

, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).

• Cryptographic primitives are handled symbolically or as a
black-box.

• Complete control over the network: sending, receiving
messages is done by the attacker.

• Usually, access to a reveal oracle

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).

• Cryptographic primitives are handled symbolically or as a
black-box.

• Complete control over the network: sending, receiving
messages is done by the attacker.

• Usually, access to a reveal oracle

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).

• Cryptographic primitives are handled symbolically or as a
black-box.

• Complete control over the network: sending, receiving
messages is done by the attacker.

• Usually, access to a reveal oracle

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).
• Cryptographic primitives are handled symbolically or as a

black-box.

• Complete control over the network: sending, receiving
messages is done by the attacker.

• Usually, access to a reveal oracle

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).
• Cryptographic primitives are handled symbolically or as a

black-box.
• Complete control over the network: sending, receiving

messages is done by the attacker.

• Usually, access to a reveal oracle

13/18

Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[!KU(x)] --[K(x)]-> [In(x)]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).
• Cryptographic primitives are handled symbolically or as a

black-box.
• Complete control over the network: sending, receiving

messages is done by the attacker.
• Usually, access to a reveal oracle

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,

'g'^~sk

)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,

'g'^~sk

)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace:

CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity

, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:
• !Id($A,~sk,'g'^~sk)

•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk

, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:
• !Id($A,~sk,'g'^~sk)
• Out(<A,pk>)

• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv

, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:
• !Id($A,~sk,'g'^~sk)
• !KD(<A,pk>)

• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:
• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce

, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:
• !Id($A,~sk,'g'^~sk)
• !KD(<A,pk>)
• !KU(<A,pk>)

• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:
• <A,pk>

14/18

State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[Fr(~sk)]
-->
[!Id($A,~sk,'g'^~sk)]

rule GetPk:
[!Id(A,sk,pk)]
-->
[Out(<A, pk>)]

State:
• !Id($A,~sk,'g'^~sk)
• !KD(<A,pk>)
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:
• <A,pk>

15/18

The Language of Tamarin-Prover
Lemmata

lemma LemmaIdentifier:
exists-trace | all-traces
"

formula to prove
"

The formula is given in first-order logic and uses symbols such as
Ex, All, ==>, etc.

Important: In the formula we can only access action facts!

15/18

The Language of Tamarin-Prover
Lemmata

lemma LemmaIdentifier:
exists-trace | all-traces
"

formula to prove
"

The formula is given in first-order logic and uses symbols such as
Ex, All, ==>, etc.

Important: In the formula we can only access action facts!

15/18

The Language of Tamarin-Prover
Lemmata

lemma LemmaIdentifier:
exists-trace | all-traces
"

formula to prove
"

The formula is given in first-order logic and uses symbols such as
Ex, All, ==>, etc.

Important: In the formula we can only access action facts!

16/18

Demo ⌣

17/18

Goals for the Lab

• Theory of Tamarin-Prover

• mathematical foundation

, in particular
• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories

• How is the language of Tamarin-Prover reflecting those
notions?

• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover

• mathematical foundation

, in particular
• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories

• How is the language of Tamarin-Prover reflecting those
notions?

• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation

, in particular
• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories
• How is the language of Tamarin-Prover reflecting those

notions?
• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation, in particular

• order-sorted term algebras
• equational theories

• operations: substitution, replacements, unification, matching,
rewriting modulo equational theories

• How is the language of Tamarin-Prover reflecting those
notions?

• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation, in particular

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories

• How is the language of Tamarin-Prover reflecting those
notions?

• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation, in particular

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories
• How is the language of Tamarin-Prover reflecting those

notions?

• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation, in particular

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories
• How is the language of Tamarin-Prover reflecting those

notions?
• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation, in particular

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories
• How is the language of Tamarin-Prover reflecting those

notions?
• What are the limitations of Tamarin-Prover?

• Practical Application
• Implementing small toy examples to learn the language

• Working on (parts of) the IPSec protocol

17/18

Goals for the Lab

• Theory of Tamarin-Prover
• mathematical foundation, in particular

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories
• How is the language of Tamarin-Prover reflecting those

notions?
• What are the limitations of Tamarin-Prover?

• Practical Application
• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol

References
Gilles Barthe. EasyCrypt - Lecture 1 - Introduction.
EasyCrypt-F*-CryptoVerif School 2014. Nov. 24, 2014.
URL: https://www.easycrypt.info/trac/raw-
attachment/wiki/SchoolParis14/lecture1.pdf
(visited on 05/11/2018).
David Basin et al. Tamarin-Prover Manual. Security
Protocol Analysis in the Symbolic Model. Mar. 13,
2018. URL: https://tamarin-
prover.github.io/manual/tex/tamarin-
manual.pdf (visited on 05/13/2018).
Karthikeyan Bhargavan et al. “Proving the TLS
Handshake Secure (as it is)”. In: Advances in
Cryptology – CRYPTO 2014. Ed. by Juan A. Garay
and Rosario Gennaro. Springer Berlin Heidelberg, 2014,
pp. 235–255. DOI: 10.1007/978-3-662-44381-1_14.
URL: https://eprint.iacr.org/2014/182 (visited
on 05/13/2018).
Mihir Bellare and Phillip Rogaway. Code-Based
Game-Playing Proofs and the Security of Triple
Encryption. Cryptology ePrint Archive, Report
2004/331. 2004. URL:
https://eprint.iacr.org/2004/331 (visited on
05/11/2018).
Cas Cremers et al. “A Comprehensive Symbolic
Analysis of TLS 1.3”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. ACM, 2017,
pp. 1773–1788. DOI: 10.1145/3133956.3134063.
URL:
http://doi.acm.org/10.1145/3133956.3134063.
Danny Dolev and Andrew Yao. “On the security of
public key protocols”. In: IEEE Transactions on
information theory 29.2 (1983), pp. 198–208. DOI:
10.1109/tit.1983.1056650.
Shai Halevi. A plausible approach to computer-aided
cryptographic proofs. Cryptology ePrint Archive,
Report 2005/181. 2005. URL:
https://eprint.iacr.org/2005/181 (visited on
05/11/2018).

Thank you for your attention!
18/18

https://www.easycrypt.info/trac/raw-attachment/wiki/SchoolParis14/lecture1.pdf
https://www.easycrypt.info/trac/raw-attachment/wiki/SchoolParis14/lecture1.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
http://dx.doi.org/10.1007/978-3-662-44381-1_14
https://eprint.iacr.org/2014/182
https://eprint.iacr.org/2004/331
http://dx.doi.org/10.1145/3133956.3134063
http://doi.acm.org/10.1145/3133956.3134063
http://dx.doi.org/10.1109/tit.1983.1056650
https://eprint.iacr.org/2005/181

	Motivation
	Tamarin-Prover
	Overview
	Language and Environment State
	Demo

	Goals for the Lab

