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The Thing with Proofs

Consider the following “proof”:
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Thus, clearly −1 = 1. ⌢

Lesson:
It is easy to make subtle mistakes in proofs which makes them
difficult to verify.
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Experts on Security Proofs1

• “In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor. [...] game-playing may play a role in the answer.”
Bellare and Rogaway 2004

• “We generate more proofs than we carefully verify (and as a
consequence some of our published proofs are incorrect).”
Halevi 2005

1Slide inspired by Barthe (2014)
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The Cryptographer’s Wish List

Wouldn’t it be great if we had a machine that

• can verify a proof
• can complete a partial proof
• can find a proof
• can find counter examples for disproof

of statements or security properties for a given protocol.

Goal: Extensible framework for plug-and-play security.
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Automatic Provers - A Status Quo

• Mathematics: Coq

• based on homotopy type theory
• Univalent Foundations of Mathematics, Vladimir Voevodsky

• ProVerif, CryptoVerif, ...
• EasyCrypt

• e.g. “Proving the TLS Handshake Secure (as it is)”
(Bhargavan et al. 2014)

• Tamarin-Prover

• based on constraint logic
• symbolic analysis
• e.g. “A Comprehensive Symbolic Analysis of TLS 1.3”

(Cremers et al. 2017)

Our Goal: Analyse IPSec protocol using automatic provers
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Tamarin

Brocken Inaglory, edited by Fir0002, edited by Brocken Inaglory
(https://commons.wikimedia.org/wiki/File:Tamarin_portrait_2_edit3.jpg)

https://creativecommons.org/licenses/by-sa/4.0/legalcode
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The Cryptographer’s Wish List

Tamarin-Prover can

7 verify a proof
? complete a partial proof
3 find a valid proof
3 find a counter example for disproving

of statements or security properties for a given protocol.
(Tamarin-Prover Manual, Basin et al. 2018)

However, Tamarin-Prover is not guaranteed to terminate.
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The Language of Tamarin-Prover
Anatomy of Tamarin Scripts

A script for Tamarin-Prover is a text file with the extension
.spthy (stands for security protocol theory).

theory TheoryName
begin

# stuff goes here

end

Constructs
• Variables, Constants
• Function symbols
• Equations
• Rules
• Axioms
• Lemmata

• etc.

During execution, the state of Tamarin is a multiset of facts.
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The Language of Tamarin-Prover
Variables and Constants

'g' constants, e.g. DH group element
m messages, e.g. encrypted data, plaintexts

~x random variables, e.g. nonces, private keys
$S publicly known variables, e.g. server identity
#i temporal variable, e.g. to determine the order in

which events happened
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The Language of Tamarin-Prover
Rules

rule RuleIdentifier:
[ Premise Facts ]
--[ Action Facts ]->

# can be abbreviated by -->

[ Conclusion Facts ]

The facts In(...) and Out(...) represent messages received or
sent over an unprotected channel, respectively.
The fact Fr(...) generates fresh variables.
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State of the Environment I
Create Something from Nothing

Trace: RuleConstant, RuleConstant, RuleConsumer

rule RuleConstant:
[ ] --> [ Fact('a') ]

rule RuleConsumer:
[ Fact('a') ] --> [ NewFact('b') ]

State
(multiset of facts):
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Tamarin-Prover’s Attack Model

There are predefined rules for the attacker, e.g.

rule isend:
[ !KU(x) ] --[ K(x) ]-> [ In(x) ]

Tamarin implements the Dolev-Yao attack model (Dolev and Yao
1983).

• Cryptographic primitives are handled symbolically or as a
black-box.

• Complete control over the network: sending, receiving
messages is done by the attacker.

• Usually, access to a reveal oracle
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State of the Environment II
Public Channel vs. State

Trace: CreateIdentity, GetPk, irecv, coerce, isend

builtins: diffie-hellman

rule CreateIdentity:
[ Fr(~sk) ]
-->
[ !Id($A,~sk,

'g'^~sk

) ]

rule GetPk:
[ !Id(A,sk,pk) ]
-->
[ Out(<A, pk>) ]

State:

• !Id($A,~sk,'g'^~sk)
•
• !KU(<A,pk>)
• In(<A,pk>)
• K(<A,pk>) (action fact)

Public Channel:

• <A,pk>
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The Language of Tamarin-Prover
Lemmata

lemma LemmaIdentifier:
exists-trace | all-traces
"

formula to prove
"

The formula is given in first-order logic and uses symbols such as
Ex, All, ==>, etc.

Important: In the formula we can only access action facts!
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Demo ⌣
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Goals for the Lab

• Theory of Tamarin-Prover

• mathematical foundation

, in particular
• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching,

rewriting modulo equational theories

• How is the language of Tamarin-Prover reflecting those
notions?

• What are the limitations of Tamarin-Prover?

• Practical Application

• Implementing small toy examples to learn the language
• Working on (parts of) the IPSec protocol
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