e-voting

Seminar Advanced Topics in Cryptography

Selin Sezer

e-voting

- Introduction
- Authentication in Electronic Elections
- Security Aspects
- Bullet Points From Paper
 - Authentication with Weaker Trust Assumptions for Voting Systems(Quaglia & Smyth)

Introduction

e-voting

• Decision making process

- Hard, conflicting security requirements for remote voting:
 - Integrity
 - Confidentiality

Discussion and/or voting technology pilots

Discussion concrete plans for Internet voting

eliot scanners and/or Jectronic Voting Machines (legally binding)

Internet voting (legally binding) (also used with other voting technologies)

Stopped use of voting technologies

World Map of Electronic Voting 5

Authentication in Electronic Elections

External Authentication*

*Helios(via Facebook, Google), Yahoo(via OAuth)

 Γ_{Ext} = (Setup, Vote, Tally, Verify)

Identities: Tallier (T), Voter (V)

<u>T:</u> (pk, sk, mb, mc) \leftarrow Setup(κ)

<u>V</u>: b or ⊥ ← Vote(pk, nc, v, κ)

<u>T:</u> (V, pf) \leftarrow Tally(sk, nc, bb, κ)

s \leftarrow Verify(pk, nc, bb, V, pf, κ)

K: security parameter, pk: public key of tallier, sk: secret key of tallier *mb: max. #ballots, mc: max. #candidates, pd: public credential,*

d: private credential, nc: some #candidates, v: voter's vote, b: ballot, bb: bulletin board, L: electoral roll, pf: non-interactive proof, V: election outcome vector, 7 s: election successful bit $\in \{0, 1\}$

Internal Authentication**

** Voting system by Juels, Catalano & Jakobsson via cryptographic primitives

Γ_{int} = (Setup, *Register*, Vote, Tally, Verify)

Identities: Tallier (T), *Registrar (R)*, Voter (V)

<u>T</u>: (pk, sk, mb, mc) ← Setup(κ) <u>R</u>: (pd, d) ← Register(pk, κ) <u>V</u>: b ← Vote(d, pk, nc, v, κ) <u>T</u>: (V, pf) ← Tally(sk, nc, bb, L, κ) ∴ s ← Verify(pk, nc, bb, L, V, pf, κ)

Correctness

 $(pk, sk, mb, mc) \leftarrow Setup(\kappa)$

for $1 \le i \le nb$ do

 $(pd_i, d_i) \leftarrow Register(pk, \kappa)$ b_i $\leftarrow Vote(\langle d_i \rangle, pk, nc, v_i, \kappa)$

 $V[v_i] \leftarrow V[v_i] + 1$

(V', pf) \leftarrow Tally(sk, nc, {b₁,..., b_{nb}}, **<{pd₁,..., pd_{nb}}>**, κ)

prob(V = V' | nb \leq mb \wedge nc \leq mc) > 1 - negl(κ)

- Ballot secrecy
- Election verifiability
 - Individual verifiability
 - Universal verifiability
- Eligibility verifiability

- Ballot secrecy
- Election verifiability
 - Individual verifiability
 - Universal verifiability
- Eligibility verifiability

External Ballot Secrecy Game *G*^{Bal-Sec-Ext}

- > Run election setup (pk, sk, mb, mc) \leftarrow Setup(κ).
- > Call the attacker A with input 1^{κ} and pk. Await a number nc.
- > Set B ← Ø.
- > Choose a hidden bit $h \leftarrow \{0,1\}$ randomly.
- Prepare a secrecy oracle O^{Sec}. When called with v₀, v₁ ∈ {1,...,nc}, the oracle creates ballot b ← Vote(pk, nc, v_h, κ), adds it to B ← B ∪ {(b,v₀,v₁)} and returns b.
- Call the attacker A with O^{Sec}. Await a bb.
- \succ Run tally (V, pf) ← Tally(sk, nc, bb, κ).
- > Call the attacker A with input V and pf. Await a guess h' \in {0,1}.
- > If $h = h' \land balanced(bb, nc, B) \land 1 \le nc \le mc \land //bb // \le mb$ then ACCEPT else REJECT.

*balanced(bb, nc, B): $\forall v \in \{1,...,nc\}$ we have $|\{b \mid b \in bb \land \exists v_1. (b,v,v_1) \in B\}| = |\{b \mid b \in bb \land \exists v_0. (b,v_0,v) \in B\}|$

Definition

An electronic election scheme with external auth. $\Gamma_{Ext} = (Setup, Vote, Tally, Verify)$ satisfies Ballot-Secrecy-Ext iff for each ppt attacker *A* the advantage $adv^{Bal-Sec-Ext}(A) = |prob(G^{Bal-Sec-Ext}(A) = ACCEPT) - \frac{1}{2}|$ is at most *negl(k)*.

Internal Ballot Secrecy Game G^{Bal-Sec-Int}

- > Run election setup (pk, sk, mb, mc) \leftarrow Setup(κ).
- > Call the attacker A with input 1^k and pk. Await a number nv.
- For 1 ≤ i ≤ nv do $(pd_i, d_i) \leftarrow \text{Register}(pk, κ).$
- > Call the attacker A with input $\{pd_{1},...,pd_{n}\}$. Await a number nc.
- > Set B ← Ø, $\mathbf{R} \leftarrow \mathbf{Ø}$.
- > Choose a hidden bit $h \leftarrow \{0,1\}$ randomly.
- Prepare a secrecy oracle O^{sec}. When called with i, adds i to R and returns d_i if i ∉ R. When called with i ∉ R and v₀, v₁ ∈ {1,...,nc}, the oracle creates ballot b ← Vote(d_i, pk, nc, v_h, κ) and adds it to B ← B ∪ {(b, v₀, v₁)}, adds i to R and returns b.
- Call the attacker A with O^{Sec}. Await a bb.
- > Run tally (V, pf) ← Tally(sk, nc, bb, $\{pd_1,...,pd_n\}$, κ).
- > Call the attacker A with input V and pf. Await a guess $h' \in \{0,1\}$.
- If h = h' ∧ balanced(bb, nc, B) ∧ 1 ≤ nc ≤ mc ∧ //bb //≤ mb then ACCEPT else REJECT.

Definition

An electronic election scheme with internal auth. $\Gamma_{\text{Int}} = (\text{Setup}, Register, \text{Vote, Tally, Verify})$ satisfies Ballot-Secrecy-Int iff for each ppt attacker *A* the advantage $adv^{\text{Bal-Sec-Int}}(A) = |\text{prob}(G^{\text{Bal-Sec-Int}}(A) = \text{ACCEPT}) - \frac{1}{2}|$ is at most $negl(\kappa)$.

- Ballot secrecy
- Election verifiability
 - Individual verifiability
 - Universal verifiability
- Eligibility verifiability

External Individual Verifiability Game *G*^{IV-Ext}

- > Call the attacker A with input 1^{κ} . Await pk, nc, v, v'.
- > Run vote algorithm for v and v': $b \leftarrow Vote(pk, nc, v, \kappa)$ $b' \leftarrow Vote(pk, nc, v', \kappa)$
- > If $b = b' \land b \neq \bot \land b' \neq \bot$ then ACCEPT else REJECT.

Definition

An electronic election scheme with external auth. $\Gamma_{Ext} = (Setup, Vote, Tally, Verify)$ satisfies IV-Ext iff for each ppt attacker *A* the advantage $adv^{IV-Ext}(A) = |prob (G^{IV-Ext}(A) = ACCEPT)|$ is at most $negl(\kappa)$.

Internal Individual Verifiability Game *G*^{IV-Int}

- > Call the attacker A with input 1^k. Await *pk and nv*.
- For 1 ≤ i ≤ nv do $(pd_i, d_i) \leftarrow \text{Register}(pk, κ).$
- ▶ Let $L \leftarrow \{pd_1, ..., pd_n\}$ and $Crypt \leftarrow \emptyset$.
- > Prepare oracle O^{iV} . When called with *i* ∈ {1,...,*nv*}, adds d_i to Crypt and returns d_i.
- > Call the attacker A with L and O^{IV} . Await nc, v, v', i, j.
- $\begin{array}{l} \succ \qquad \text{Run vote algorithm for v and v':} \\ b \leftarrow \text{Vote}(\boldsymbol{d}_{j},\text{pk, nc, v, \kappa}) \\ b' \leftarrow \text{Vote}(\boldsymbol{d}_{j},\text{pk, nc, v', \kappa}) \end{array}$
- > If $b = b' \land b \neq \perp \land b' \neq \perp \land i \neq j \land d_i \notin Crypt \land d_j \notin Crypt$ then ACCEPT else REJECT.

Definition

An electronic election scheme with internal auth. $\Gamma_{\text{int}} = (\text{Setup}, Register, Vote, Tally, Verify)$ satisfies IV-Int iff for each ppt attacker *A* the advantage $adv^{\text{IV-Int}}(A) = |\text{prob} (G^{\text{IV-Int}}(A) = \text{ACCEPT})|$ is at most $negl(\kappa)$.

- Ballot secrecy
- Election verifiability
 - Individual verifiability
 - Universal verifiability
- Eligibility verifiability

- The outcome vector length must be nc.
- Component β of Tally outcome vector equals ℓ iff there exist ℓ unique ballots on the bulletin board that are votes for candidate β .
- The output represents the choices used to construct the recorded ballots.

Injectivity

Ballots interpreted only for one candidate.

(v≠v' => b≠b')

20

L	Injectivity	Completeness
	Ballots interpreted only for one candidate.	Tally produces election outcomes that will be accepted by Verify.
		(pr[bb ≤ mb ∧ nc ≤ mc => Verify()=1] > 1-negl())

Injectivity	Completeness	Soundness
Ballots interpreted only for one candidate.	Tally produces election outcomes that will be accepted by Verify .	The probability to conduct a scenario where Verify accepts although the election outcome is not correct is negligible.

Pr[V*≠V => Verify(V*) = 1]≤ negl()

Γ_{Ext/Int} = (Setup, <Register>, Vote, Tally, Verify) satisfies **Universal Verifiability (UV-Ext/Int)**

if

Injectivity, Completeness and Soundness are satisfied.

- Ballot secrecy
- Election verifiability
 - Individual verifiability
 - Universal verifiability
- Eligibility verifiability

Eligibility Verifiability Game GEV-Int

- > Call the attacker A with input 1^{κ} . Await pk and nv.
- For 1 ≤ i ≤ nv do $(pd_i, d_i) \leftarrow Register(pk, κ).$
- ▶ Let $L \leftarrow \{pd_1, ..., pd_{nv}\}$, Crpt $\leftarrow \emptyset$, and Rvld $\leftarrow \emptyset$.
- Prepare oracle O^{EV}. When called with i, v, nc; computes b ← Vote(d_i,pk, nc, v, κ), adds b to Rvld and outputs b.
- > Prepare oracle O^{IV} . When called with i ∈ {1,...,nv}, adds d_i to Crypt and returns d_i.
- > Call the attacker A with L, O^{EV} and O^{IV} . Await nc, v, i, b.
- → If $b \neq \perp \land b \notin \mathsf{Rvld} \land d_i \notin \mathsf{Crpt} \land \exists r: b = \mathsf{Vote}(d_i, \mathsf{pk}, \mathsf{nc}, \mathsf{v}, \kappa; r)$ then ACCEPT else **REJECT**.

Definition

An electronic election scheme with internal auth. $\Gamma_{int} = (Setup, Register, Vote, Tally, Verify)$ satisfies EV-Int iff for each ppt attacker *A* the advantage $adv^{EV-Int}(A) = |prob (G^{EV-Int}(A) = ACCEPT)|$

is at most $negl(\kappa)$.

Authentication with Weaker Trust Assumptions for Voting Systems*

(*) Elizabeth A. Quaglia and Ben Smyth (2018) https://eprint.iacr.org/2018/222.pdf

Ext2Int

Γ_{Ext} — Γ_{Int} +digital signature + NIPS

- Relation R(Γ , Ω) such that ((pk, b, σ , nc, κ), (v, r, d, r')) \in R(Γ , Ω) \Leftrightarrow b = Vote(pk, nc, v, κ ; r) $\land \sigma$ = Sign_o(d, b; r')
- $FS(\Sigma, H) = (Prove_{\Sigma}, Verify_{\Sigma})$
- $\Omega = (Gen_{\Omega}, Sign_{\Omega}, Verify_{\Omega})$
- Ext2Int(Γ, Ω, Σ, Η) where
 Γ : Underlying election scheme
 Ω : Signature Scheme
 Σ : Sigma Protocol for R
 Η : Hash Function

Construction

Ext2Int(Γ , Ω , Σ , H) = (Setup, Register, Vote, Tally, Verify) such that:

 $\mathsf{Setup}(\kappa): (\mathsf{pk}, \mathsf{sk}, \mathsf{mb}, \mathsf{mc}) \leftarrow \mathsf{Setup}_{\Gamma}(\kappa)$

Register(pk, κ): (pd, (pd,d)) \leftarrow Gen_o(pk)

Vote(d', pk, nc, v, κ): if parse(d') = (pd,d) fails then \perp else pick r, r' at random and compute: $b \leftarrow Vote_{\Gamma}(pk, nc, v, \kappa; r)$ $\sigma \leftarrow Sign_{\Omega}(d, b; r')$ $\tau \leftarrow Prove_{\Sigma}((pk, b, \sigma, nc, \kappa), (v, r, d, r'), \kappa)$ and outputs (pd, b, σ , τ).

Tally(sk, nc, bb, L, κ): (V, pf) \leftarrow Tally_r(sk, auth(bb, L), nc, κ)

Verify(pk, nc, bb, L, V, pf, κ): s \leftarrow Verify_r(pk, auth(bb, L), nc, V, pf, κ)

Ext2Int

auth(bb, L) =

```
 \begin{array}{l} \{b \mid (pd, \, b, \, \sigma, \, \tau) \in bb \ \land \\ \mathsf{Verify}_\Omega(pd, \, b, \, \sigma) = 1 \ \land \\ \mathsf{Verify}_{\Sigma}((pk, \, b, \, nc, \, \kappa), \, \tau, \, \kappa) = 1 \ \land \\ \mathsf{pd} \in L \ \land \\ (pd, \, b', \, \sigma', \, \tau') \notin bb \ \{(pd, \, b, \, \sigma, \, \tau)\} \ \land \\ \mathsf{Verify}_\Omega(pd, \, b', \, \sigma') = 1\}. \end{array}
```

OR

One cannot vote more than once. (Vote once or never)

Σ : Sigma Protocol for R Η : Hash Function

Construction

Ext2Int(Γ , Ω , Σ , H) = (Setup, Register, Vote, Tally, Verify) such that:

Setup(κ): (pk, sk, mb, mc) \leftarrow Setup_{Γ}(κ)

Register(pk, κ): (pd, (pd,d)) \leftarrow Gen_o(pk)

Vote(d', pk, nc, v, κ): if parse(d') = (pd,d) fails then \perp else pick r, r' at random computes: $b \leftarrow Vote_{\Gamma}(pk, nc, v, \kappa; r)$ $\sigma \leftarrow Sign_{\Omega}(d, b; r')$ Prove_s((pk, b, σ , nc, κ), (v, r, d, r'), κ)

Tally(sk, nc, bb, L, v, pf, κ): (v, pf) \leftarrow Tally_r(sk, auth(bb, L), nc, κ)

$$\label{eq:Verify} \begin{split} & \text{Verify}(\text{pk}, \text{nc}, \text{bb}, \text{L}, \text{v}, \text{pf}, \kappa)\text{: s} \leftarrow \text{Verify}_{\Gamma}(\text{pk}, \text{auth}(\text{bb}, \text{L}), \\ & \text{nc}, \text{v}, \text{pf}, \kappa) \end{split}$$

Let Γ be an election scheme with external authentication, Ω be a digital signature scheme, Σ be a sigma protocol for relation R(Γ , Ω), and H be a random oracle.

lf

 Ω satisfies strong unforgeability, then Ext2Int(Γ , Ω , Σ , H) is an election scheme with internal authentication.

Security of Ext2Int

Let Γ be an election scheme with external authentication, Ω be a digital signature scheme, Σ be a sigma protocol for relation R(Γ, Ω), and H be a random oracle.

lf

 Γ satisfies Ballot-Secrecy-Ext, Σ satisfies special soundness and special honest verifier zero-knowledge, and Ω satisfies strong unforgeability

Then

Election scheme with internal authentication Ext2Int(Γ , Ω , Σ , H) satisfies Ballot-Secrecy-Int.

Pf. Sketch: ...

Security of Ext2Int

Let Γ be an election scheme with external authentication, Ω be a digital signature scheme, Σ be a sigma protocol for relation R(Γ, Ω), and H be a random oracle.

lf

 Ω satisfies strong unforgeability, Σ satisfies special soundness and special honest verifier zero-knowledge, and Γ satisfies UV-Ext

Then

Election scheme with internal authentication Ext2Int(Γ ; Ω ; Σ ; H) satisfies IV-Int, EV-Int, and UV-Int.

Pf. Sketch: ...

ASQ