
e-voting
Seminar Advanced Topics in Cryptography

Selin Sezer

1



e-voting
● Introduction
● Authentication in Electronic Elections
● Security Aspects
● Bullet Points From Paper

○ Authentication with Weaker Trust Assumptions for Voting Systems(Quaglia & Smyth)

2

http://progress_bar_id


Introduction

3

http://progress_bar_id


e-voting

● Decision making process

● Hard, conflicting security requirements for remote voting:
○ Integrity
○ Confidentiality

4

http://progress_bar_id


5

http://progress_bar_id


Authentication in Electronic 
Elections

6

http://progress_bar_id


External Authentication* Internal Authentication**

ΓExt = (Setup, Vote, Tally, Verify) ΓInt = (Setup, Register, Vote, Tally, Verify) 

Identities: Tallier (T), Voter (V) Identities: Tallier (T), Registrar (R), Voter (V) 

T:    (pk, sk, mb, mc) ← Setup(κ)

V:        b  or ⊥       ← Vote( pk, nc, v, κ)

T:    (V, pf )            ← Tally(sk, nc, bb, κ)

-: s   ←  Verify(pk, nc, bb, V, pf, κ)

T:    (pk, sk, mb, mc) ← Setup(κ)

R:    (pd, d)       ← Register(pk, κ)

V:        b       ← Vote(d, pk, nc, v, κ)

T:    (V, pf )            ← Tally(sk, nc, bb, L, κ)

-: s   ←  Verify(pk, nc, bb, L, V, pf, κ)

Κ: security parameter, 
pk: public key of tallier, 
sk: secret key of tallier, 

d: private credential, 
nc: some #candidates, 
v: voter’s vote, 

mb: max. #ballots, 
mc: max. #candidates, 
pd: public credential, 

b: ballot, 
bb: bulletin board, 
L: electoral roll,  

pf: non-interactive proof, 
V: election outcome vector, 
s: election successful bit ∈ {0,1}  

*Helios(via Facebook, Google), Yahoo(via OAuth) ** Voting system by Juels, Catalano & Jakobsson via cryptographic 
primitives

7

http://progress_bar_id


Correctness
(pk, sk, mb, mc) ← Setup(κ)

for 1 ≤ i ≤ nb do

(pdi , di )      ← Register(pk, κ)

bi ← Vote(<di>, pk, nc, vi, κ)

V[ i] ← V[ i] + 1

(V’, pf ) ← Tally(sk, nc,  {b1,..., bnb}, <{pd1,..., pdnb}>, κ)

prob(V = V’ | nb ≤ mb ⋀ nc ≤ mc) > 1 - negl(κ)

8

http://progress_bar_id


Security Aspects

9

http://progress_bar_id


Security Aspects

10

Smyth, Frink 
& Clarkson

http://progress_bar_id


Security Aspects

● Ballot secrecy
● Election verifiability

○ Individual verifiability

○ Universal verifiability

● Eligibility verifiability

11

http://progress_bar_id


Security Aspects

● Ballot secrecy
● Election verifiability

○ Individual verifiability

○ Universal verifiability

● Eligibility verifiability

12

http://progress_bar_id


External Ballot Secrecy Game GBal-Sec-Ext

An electronic election scheme with external auth.
ΓExt = (Setup, Vote, Tally, Verify) 
satisfies Ballot-Secrecy-Ext 
iff 
for each ppt attacker A the advantage 

advBal-Sec-Ext(A) = |prob (GBal-Sec-Ext(A) = ACCEPT) -  ½| 

is at most negl(κ).

Definition
➢ Run election setup (pk, sk, mb, mc) ← Setup(κ).

➢ Call the attacker A with input 1κ and pk. Await a number nc.

➢ Set B ← Ø.

➢ Choose a hidden bit h ← {0,1} randomly.

➢ Prepare a secrecy oracle OSec. When called with v0,v1 ∈ {1,...,nc}, 
the oracle creates ballot b ← Vote( pk, nc, vh, κ), adds it to B ← B ⋃ 
{(b,v0,v1)} and returns b.

➢ Call the attacker A with OSec. Await a bb. 

➢ Run tally (V, pf ) ← Tally(sk, nc, bb, κ).

➢ Call the attacker A with input V and pf. Await a guess h’ ∈ {0,1}. 

➢ If h = h’  ⋀  balanced(bb, nc, B) ⋀  1 ≤ nc ≤ mc ⋀ ∥bb∥  ≤ mb then 
ACCEPT
else REJECT. 

*balanced(bb, nc, B): 
∀v∊{1,...,nc } we have

|{b | b∊bb ⋀ ∃v1. (b,v,v1) ∊ B}| =  |{b | b∊bb ⋀ ∃v0. (b,v0,v) ∊ B}|  

13

http://progress_bar_id


Internal Ballot Secrecy Game GBal-Sec-Int

An electronic election scheme with internal auth.
ΓInt = (Setup, Register, Vote, Tally, Verify) 
satisfies Ballot-Secrecy-Int 
iff 
for each ppt attacker A the advantage 

advBal-Sec-Int(A) = |prob (GBal-Sec-Int(A) = ACCEPT) -  ½| 

is at most negl(κ).

Definition
➢ Run election setup (pk, sk, mb, mc) ← Setup(κ).

➢ Call the attacker A with input 1κ and pk. Await a number nv.

➢ for 1 ≤ i ≤ nv do
(pdi , di ) ← Register(pk, κ).

➢ Call the attacker A with input {pd1,...,pdnv}. Await a number nc.

➢ Set B ← Ø,  R ← Ø.

➢ Choose a hidden bit h ← {0,1} randomly.

➢ Prepare a secrecy oracle OSec. When called with i, adds i to R 
and returns di if i ∉ R. When called with i ∉ R and v0,v1 ∈ 
{1,...,nc}, the oracle creates ballot b ← Vote( di , pk, nc, vh, κ) and 
adds it to B ← B ⋃ {(b,v0,v1)}, adds i to R and returns b.

➢ Call the attacker A with OSec. Await a bb. 

➢ Run tally (V, pf ) ← Tally(sk, nc, bb, {pd1,...,pdnv}, κ).

➢ Call the attacker A with input V and pf. Await a guess h’ ∈ {0,1}. 

➢ If h = h’  ⋀  balanced(bb, nc, B) ⋀  1 ≤ nc ≤ mc ⋀∥bb∥≤ mb then 
ACCEPT
else REJECT. 

14

http://progress_bar_id


Security Aspects

● Ballot secrecy
● Election verifiability

○ Individual verifiability

○ Universal verifiability

● Eligibility verifiability

15

http://progress_bar_id


External Individual Verifiability Game 
GIV-Ext

An electronic election scheme with external auth.
ΓExt = (Setup, Vote, Tally, Verify) 
satisfies IV-Ext 
iff 
for each ppt attacker A the advantage 

advIV-Ext(A) = |prob (GIV-Ext(A) = ACCEPT)| 

is at most negl(κ).

Definition

➢ Call the attacker A with input 1κ. Await pk, nc, v, v’.

➢ Run vote algorithm for v and v’:  
b ← Vote( pk, nc, v, κ)
b’ ←Vote( pk, nc, v’, κ)

➢ If b = b’  ⋀ b ≠⊥ ⋀  b’ ≠⊥ then ACCEPT
else REJECT. 

16

http://progress_bar_id


Internal Individual Verifiability Game 
GIV-Int

An electronic election scheme with internal auth.
ΓInt = (Setup, Register, Vote, Tally, Verify)
satisfies IV-Int 
iff 
for each ppt attacker A the advantage 

advIV-Int(A) = |prob (GIV-Int(A) = ACCEPT)| 

is at most negl(κ).

Definition

➢ Call the attacker A with input 1κ. Await pk and nv.

➢ for 1 ≤ i ≤ nv do
(pdi , di ) ← Register(pk, κ).

➢ Let L ← {pd1,...,pdnv} and Crypt ← Ø.

➢ Prepare oracle OIV. When called with i ∈ {1,...,nv}, adds di  to 
Crypt and returns di .

➢ Call the attacker A with L and OIV. Await nc, v, v’, i, j.

➢ Run vote algorithm for v and v’:  
b ← Vote(di ,pk, nc, v, κ)
b’ ←Vote( dj ,pk, nc, v’, κ)

➢ If b = b’  ⋀ b ≠⊥ ⋀  b’ ≠⊥ ⋀ i ≠ j ⋀ di ∉ Crypt ⋀ dj ∉ Crypt 
then ACCEPT else REJECT. 

17

http://progress_bar_id


Security Aspects

● Ballot secrecy
● Election verifiability

○ Individual verifiability

○ Universal verifiability

● Eligibility verifiability

18

http://progress_bar_id


Algorithm Verify is required to accept iff the election outcome is correct.

- The outcome vector length must be nc . 

- Component β of Tally outcome vector equals  iff there exist  unique ballots on the 
bulletin board that are votes for candidate β.

- The output represents the choices used to construct the recorded ballots.

19

http://progress_bar_id


Algorithm Verify is required to accept iff the election outcome is correct.

Injectivity

Ballots interpreted 
only for one 
candidate.

(v≠v’ => b≠b’)

20

http://progress_bar_id


Algorithm Verify is required to accept iff the election outcome is correct.

Injectivity

Ballots interpreted 
only for one 
candidate.

Completeness

Tally produces 
election outcomes 
that will be 
accepted by Verify.

(pr[ |bb| ≤ mb ⋀  nc ≤ mc 
=> Verify()=1] > 1-negl() )

21

http://progress_bar_id


Algorithm Verify is required to accept iff the election outcome is correct.

Injectivity

Ballots interpreted 
only for one 
candidate.

Completeness

Tally produces 
election outcomes 
that will be 
accepted by Verify.

Soundness

The probability to 
conduct a scenario 
where Verify accepts 
although the election 
outcome is not correct 
is negligible.

Pr[V*≠V => Verify(V*) = 1]≤ 
negl()

22

http://progress_bar_id


Γ
Ext/Int

 = (Setup, <Register>, Vote, Tally, Verify) satisfies 
Universal Verifiability (UV-Ext/Int) 

if

Injectivity, Completeness and Soundness are satisfied.

23

http://progress_bar_id


Security Aspects

● Ballot secrecy
● Election verifiability

○ Individual verifiability

○ Universal verifiability

● Eligibility verifiability

24

http://progress_bar_id


Eligibility Verifiability Game GEV-Int

An electronic election scheme with internal auth.
ΓInt = (Setup, Register, Vote, Tally, Verify)
satisfies EV-Int 
iff 
for each ppt attacker A the advantage 

advEV-Int(A) = |prob (GEV-Int(A) = ACCEPT)| 

is at most negl(κ).

Definition

➢ Call the attacker A with input 1κ. Await pk and nv.

➢ for 1 ≤ i ≤ nv do
(pdi , di ) ← Register(pk, κ).

➢ Let L ← {pd1,...,pdnv}, Crpt ← Ø, and Rvld ← Ø.

➢ Prepare oracle OEV. When called with i, v, nc; 
computes b ← Vote(di ,pk, nc, v, κ), adds b to Rvld and outputs b.

➢ Prepare oracle OIV. When called with i ∈ {1,...,nv}, adds di  to Crypt 
and returns di .

➢ Call the attacker A with L, OEV and OIV. Await nc, v, i, b.

➢ If b ≠⊥ ⋀ b ∉ Rvld ⋀ di ∉ Crpt ⋀ ∃r: b = Vote(di ,pk, nc, v, κ ; r)
then ACCEPT else REJECT. 

25

http://progress_bar_id


Authentication with Weaker Trust
Assumptions for Voting Systems*

( * ) 
Elizabeth A. Quaglia and Ben Smyth (2018)
https://eprint.iacr.org/2018/222.pdf

26

http://progress_bar_id


Ext2Int Construction 
● Γ

Ext 
          Γ

Int
                    +digital signature
                           + NIPS

● Relation R(Γ,  Ω) such that
 ((pk, b, σ, nc, κ), (v, r, d, r’)) ∊ R(Γ,  Ω) 

⇔
b = Vote(pk, nc, v, κ; r) ⋀ σ = Sign

Ω
(d, b;  r’)

● FS(Σ, H) = (ProveΣ, VerifyΣ)

● Ω = (Gen
Ω

, Sign
Ω

, Verify
Ω

)

● Ext2Int(Γ, Ω, Σ, H) where 
Γ  : Underlying election scheme
Ω : Signature Scheme
Σ  : Sigma Protocol for R
H : Hash Function

Ext2Int(Γ, Ω, Σ, H) = (Setup, Register, Vote, Tally, Verify) 
such that:

Setup(κ): (pk, sk, mb, mc) ← SetupΓ(κ)

Register(pk, κ):   (pd, (pd,d)) ← Gen
Ω

(pk)

Vote(d’, pk, nc, v, κ): if parse(d’) = (pd,d) fails then ⊥ else
pick r, r’ at random and compute:
b ← VoteΓ(pk, nc, v, κ; r)
σ ← Sign

Ω
(d, b; r’)

τ ← ProveΣ((pk, b, σ, nc, κ), (v, r, d, r’), κ)
and outputs (pd, b, σ, τ).

Tally(sk, nc, bb, L, κ): (V, pf) ← TallyΓ(sk, auth(bb, L), nc, κ)

Verify(pk, nc, bb, L, V, pf, κ): s ← VerifyΓ(pk, auth(bb, L), 
nc, V, pf, κ)

27

http://progress_bar_id


Ext2Int Construction 

● Γ
Ext 

          Γ
Int

                    +digital signature
                           + NIPS

● Relation R(Γ,  Ω) such that
 ((pk, b, σ, nc, κ), (v, r, d, r’)) ∊ R(Γ,  Ω) 

⇔
b = Vote(pk, nc, v, κ; r) ⋀ σ = Sign

Ω
(d, b;  r’)

NEDEN ; var?

● Ω = (Gen
Ω

, Sign
Ω

, Verify
Ω

)

● Ext2Int(Γ, Ω, Σ, H) where 
Γ  : Underlying election scheme
Ω : Signature Scheme
Σ  : Sigma Protocol for R
H : Hash Function

Ext2Int(Γ, Ω, Σ, H) = (Setup, Register, Vote, Tally, Verify) 
such that:

Setup(κ): (pk, sk, mb, mc) ← SetupΓ(κ)

Register(pk, κ):   (pd, (pd,d)) ← Gen
Ω

(pk)

Vote(d’, pk, nc, v, κ): if parse(d’) = (pd,d) fails then ⊥ else
pick r, r’ at random computes:
b ← VoteΓ(pk, nc, v, κ; r)
σ ← Sign

Ω
(d, b; r’)

τ ← ProveΣ((pk, b, σ, nc, κ), (v, r, d, r’), κ)
and outputs (pd, b, σ, τ).

Tally(sk, nc, bb, L, v, pf, κ): (v, pf) ← TallyΓ(sk, auth(bb, L), 
nc, κ)

Verify(pk, nc, bb, L, v, pf, κ): s ← VerifyΓ(pk, auth(bb, L), 
nc, v, pf, κ)

auth(bb, L) = 

{b | (pd, b, σ, τ) ∊ bb ⋀
VerifyΩ(pd, b, σ) = 1 ⋀ 
VerifyΣ((pk, b, nc, κ), τ, κ) = 1 ⋀ 
pd ∊ L ⋀ 
(pd, b’, σ’, τ’) ∉ bb \{(pd, b, σ, τ)} ⋀ 
VerifyΩ(pd, b’, σ’) = 1}.

OR

One cannot vote more than once. (Vote once 
or never)

28

http://progress_bar_id


Lemma:

Let Γ be an election scheme with external 
authentication, Ω be a digital signature scheme, Σ be a sigma 

protocol for relation R(Γ, Ω), and H be a random oracle. 

If 
Ω satisfies strong unforgeability, 

then 
Ext2Int(Γ, Ω, Σ, H) is an election scheme with 

internal authentication.

29

http://progress_bar_id


Security of Ext2Int
● Let Γ be an election scheme with external authentication, Ω be a digital signature scheme, Σ be a 

sigma protocol for relation R(Γ, Ω), and H be a random oracle. 

If 
Γ satisfies Ballot-Secrecy-Ext, Σ satisfies special soundness and special honest verifier 
zero-knowledge, and Ω satisfies strong unforgeability
Then
Election scheme with internal authentication Ext2Int(Γ, Ω, Σ, H) satisfies Ballot-Secrecy-Int.

Pf. Sketch: ...

30

http://progress_bar_id


Security of Ext2Int
● Let Γ be an election scheme with external authentication, Ω be a digital signature scheme, Σ be a 

sigma protocol for relation R(Γ, Ω), and H be a random oracle. 

If
Ω satisfies strong unforgeability, Σ satisfies special soundness and special honest verifier 
zero-knowledge, and Γ satisfies UV-Ext
Then
Election scheme with internal authentication Ext2Int(Γ; Ω; Σ; H) satisfies IV-Int, EV-Int, and UV-Int.

Pf. Sketch: ...

31

http://progress_bar_id


Q&A

32

http://progress_bar_id

