Zero-Knowledge Proof of Decryption for FHE Ciphertexts

Tom Kneiphof

June 28, 2018

Scenario

- Multiple users with secret input.
- Compute some function on inputs.
- Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

Scenario

- Multiple users with secret input.
- Compute some function on inputs.
- Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

Scenario

- Multiple users with secret input.
- Compute some function on inputs.
- Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

Scenario

- Multiple users with secret input.
- Compute some function on inputs.
- Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

Multi-Party Computation

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

Problem:

- Everybody must be online.
- Asynchronous setting
- Large group setting.

Multi-Party Computation

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

Problem:

- Everybody must be online
- Asynchronous setting
- Large group setting.

Multi-Party Computation

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

Problem:

- Everybody must be online.
- Asynchronous setting
- Large group setting.

Multi-Party Computation

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

Problem:

- Everybody must be online.
- Asynchronous setting.
- Large group setting.

Multi-Party Computation

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

Problem:

- Everybody must be online.
- Asynchronous setting.
- Large group setting.

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output
- Secrets must not be revealed!

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output
- Authority proves correctness of output.
- Secrets must not be revealed!

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

Semi-Trusted Authority

- Authority is trusted to know the secret inputs.
- Authority is not trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

Framework

Framework

Framework

Framework

Fully Homomorphic Encryption

Circuits

- Think of hardware circuits.
- Consist of gates (AND, OR, NAND, ...)
- Here: Set of gates $\Gamma:=\{\cdot,+\}$.
- Only consider functions that can be expressed as circuit of gates in Γ

Circuits

- Think of hardware circuits.
- Consist of gates (AND, OR, NAND, ...).
- Here: Set of gates $\Gamma:=$
- Only consider functions that can be expressed as circuit of gates in Γ

Circuits

- Think of hardware circuits.
- Consist of gates (AND, OR, NAND, ...).
- Here: Set of gates $\Gamma:=\{\cdot,+\}$.
- Only consider functions that can be expressed as circuit of gates in Γ

Circuits

- Think of hardware circuits.
- Consist of gates (AND, OR, NAND, ...).
- Here: Set of gates $\Gamma:=\{\cdot,+\}$.
- Only consider functions that can be expressed as circuit of gates in Γ.

Somewhat Homomorphic Encryption (SHE)

```
- KeyGen }\mp@subsup{\mathcal{E}}{}{(}\mp@subsup{1}{}{\kappa})->(sk,pk)
- Set of permitted circuits }\mp@subsup{\mathcal{C}}{\mathcal{E}}{
```



```
- Decrypt
```

Correctness:
For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$:
$\psi^{\prime} \leftarrow$ Evaluate $_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(\operatorname{sk}, \psi^{\prime}\right)=C^{\prime}\left(\pi_{1}, \ldots, \pi_{t}\right)$
- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$. - Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$
- Encrypt ${ }_{\mathcal{E}}(p k, \pi) \rightarrow \psi$
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$.

Correctness:
For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$: $\psi^{\prime} \leftarrow$ Evaluate $\left(p F_{i}, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(\operatorname{sk}, \psi^{\prime}\right)=C\left(\pi_{1}, \ldots, \pi_{t}\right)$

- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$. - Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$
- Encrypt ${ }_{\mathcal{E}}(p k, \pi) \rightarrow \psi$.
- Evaluate $\mathcal{E}^{(p k}$
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$. $C \in \mathcal{C}_{\mathcal{E}}$

Correctness:

For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$: $\psi^{\prime} \leftarrow$ Evaluate $\left(p k_{i}, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(\operatorname{sk}, \psi^{\prime}\right)=C\left(\pi_{1}, \ldots, \pi_{t}\right)$

- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$.
- Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$
- Encrypt ${ }_{\mathcal{E}}(p k, \pi) \rightarrow \psi$.
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$.

Correctness:

For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$: $\psi^{\prime} \leftarrow$ Evaluate $\left(p k_{i}, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(\operatorname{sk}, \psi^{\prime}\right)=C^{\prime}\left(\pi_{1}, \ldots, \pi_{t}\right)$

- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$.
- $\operatorname{Encrypt}_{\mathcal{E}}(p k, \pi) \rightarrow \psi$.
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$.
- Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$.
- Evaluate $\left(p k, C, \psi_{1}, \ldots \psi_{t}\right) \rightarrow \psi^{\prime}$,

Correctness:
For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$: $\psi^{\prime} \leftarrow$ Evaluate $_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(\operatorname{sk}, \psi^{\prime}\right)=C\left(\pi_{1}, \ldots, \pi_{t}\right)$

- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$.
- $\operatorname{Encrypt}_{\mathcal{E}}(p k, \pi) \rightarrow \psi$.
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$.
- Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$.
- Evaluate ${ }_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots \psi_{t}\right) \rightarrow \psi^{\prime}$, $C \in \mathcal{C}_{\mathcal{E}}$.

Correctness:
For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$: $\psi^{\prime} \leftarrow$ Evaluate $_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(\operatorname{sk}, \psi^{\prime}\right)=C\left(\pi_{1}, \ldots, \pi_{t}\right)$.

- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$.
- $\operatorname{Encrypt}_{\mathcal{E}}(p k, \pi) \rightarrow \psi$.
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$.
- Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$.
- Evaluate ${ }_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots \psi_{t}\right) \rightarrow \psi^{\prime}$, $C \in \mathcal{C}_{\mathcal{E}}$.

Correctness:

For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$:
$\psi^{\prime} \leftarrow$ Evaluate $_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(s k, \psi^{\prime}\right)=C\left(\pi_{1}, \ldots, \pi_{t}\right)$.

- Ciphertext size and computation times in poly (κ).

Somewhat Homomorphic Encryption (SHE)

- $\operatorname{KeyGen}_{\mathcal{E}}\left(1^{\kappa}\right) \rightarrow(s k, p k)$.
- $\operatorname{Encrypt}_{\mathcal{E}}(p k, \pi) \rightarrow \psi$.
- $\operatorname{Decrypt}_{\mathcal{E}}(s k, \psi) \rightarrow \pi$.
- Set of permitted circuits $\mathcal{C}_{\mathcal{E}}$.
- Evaluate ${ }_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots \psi_{t}\right) \rightarrow \psi^{\prime}$, $C \in \mathcal{C}_{\mathcal{E}}$.

Correctness:

For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_{i} and their encryption $\psi_{i} \leftarrow \operatorname{Encrypt}_{\mathcal{E}}\left(p k, \pi_{i}\right), 1 \leq i \leq t$:

$$
\psi^{\prime} \leftarrow \text { Evaluate }_{\mathcal{E}}\left(p k, C, \psi_{1}, \ldots, \psi_{t}\right) \Rightarrow \operatorname{Decrypt}_{\mathcal{E}}\left(s k, \psi^{\prime}\right)=C\left(\pi_{1}, \ldots, \pi_{t}\right)
$$

- Ciphertext size and computation times in poly (κ).

Fully Homomorphic Encryption (FHE)

> Leveled Fully Homomorphic Encryption:
> - $\mathcal{C}_{\mathcal{E}}$ contains all circuits of a user chosen circuit depth.
> - Ciphertext size must be independent of circuit depth.

> Fully Homomorphic Encryption:
> - $\mathcal{C}_{\mathcal{E}}$ contains all circuits.

Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

- $\mathcal{C}_{\mathcal{E}}$ contains all circuits of a user chosen circuit depth.
- Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:
 - $\mathcal{C}_{\mathcal{E}}$ contains all circuits.

Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

- $\mathcal{C}_{\mathcal{E}}$ contains all circuits of a user chosen circuit depth.
- Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:

- $\mathcal{C}_{\mathcal{E}}$ contains all circuits.

Bootstrapping

- The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomornhic operations.

Basic Idea:

- Encrypt ciphertext under new key
- Evaluate decryption circuit homomorphically.
\checkmark Create (leveled) FHE scheme from SHE scheme.

Bootstrapping

- The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt - "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under new key
- Evaluate decryption circuit homomorphically.

\checkmark Create (leveled) FHE scheme from SHE scheme

Bootstrapping

- The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under new key.
- Evaluate decryption circuit homomorphically.
\checkmark Create (leveled) FHE scheme from SHE scheme.

Bootstrapping

- The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrynt ciphertext under new key
- Evaluate decryption circuit homomorphically.
\checkmark Create (leveled) FHE scheme from SHE scheme

Bootstrapping

- The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under new key.
- Evaluate decryption circuit homomorphically.
\checkmark Create (leveled) FHE scheme from SHE scheme.

Bootstrapping

- The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under new key.
- Evaluate decryption circuit homomorphically.
\checkmark Create (leveled) FHE scheme from SHE scheme.

Circular Security

Definition:

- SHE scheme \mathcal{E} is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- Bootstrapping: Encrypt ciphertext under same key.
- Don't have to chain secret kevs to get leveled FHE from bootstrapping
- Get FHE scheme from single SHE secret key.

Circular Security

Definition:

- SHE scheme \mathcal{E} is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- Bootstrapping: Encrypt ciphertext under same key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping
- Get FHE scheme from single SHE secret key.

Circular Security

Definition:

- SHE scheme \mathcal{E} is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- Bootstrapping: Encrypt ciphertext under same key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping.
- Get FHE scheme from single SHE secret key.

Circular Security

Definition:

- SHE scheme \mathcal{E} is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- Bootstrapping: Encrypt ciphertext under same key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping.
- Get FHE scheme from single SHE secret key.

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x):$ coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$).

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}\lceil r\rceil / \Phi(r)$: coefficient vector $\mathrm{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$).

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- For $a \in \mathbb{Z}[x] / \Phi(x):$ coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$).

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x):$ coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$).

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$).

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$).

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Polynomial Rings

- Common ring $R=\mathbb{Z}[x] / \Phi(x)$.
- $\Phi(x)=x^{d}+1$ with $d=2^{\delta}$.
- Ring of polynomials with degree at most $d-1$.
- $x^{d} \equiv-1 \bmod \Phi(x)$.
- For $a \in \mathbb{Z}[x] / \Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^{d}$.
- Polynomial addition $=$ vector addition.
- Multiplication looks similar to complex numbers (for $d=2$)...

Ring Ideals

Definition:

- $I \subset R$ is called ideal iff for all $a, b \in I, r \in R$:

Ring Ideals

Definition:

- $I \subset R$ is called ideal iff for all $a, b \in I, r \in R$:
- $0 \in I$.

Ring Ideals

Definition:

- $I \subset R$ is called ideal iff for all $a, b \in I, r \in R$:
- $0 \in I$
- $a+b \in I$.

Ring Ideals

Definition:

- $I \subset R$ is called ideal iff for all $a, b \in I, r \in R$:
- $0 \in I$
- $a+b \in I$.
- $r \cdot a \in I$.

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices \& Ideal Lattices

- Consider vector space \mathbb{R}^{d} and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- Lattice $L=\mathcal{L}(\mathcal{B})$ is integer linear combination of columns in \mathcal{B}.
- Infinite number of lattice bases for $d \geq 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R / L \Leftrightarrow \mathbb{Z}^{d} \bmod \mathcal{B}$

Lattices

Lattices

Lattices

Lattices

Lattice Basis - Rotation Basis

- Generating element $v \in R$.
$\Rightarrow \mathcal{B}_{\text {Rot }}(v)=\left\{b_{i} \in R \mid b_{i}=v \cdot x^{i}\right\}_{i \in\{0, \ldots, d-1\}}$

Important Feature:

- Basis vectors are (almost) orthogonal.
$\rightarrow R \bmod \mathcal{B}_{\text {Rot }}(v)$ contains a large ball around zero.

Lattice Basis - Rotation Basis

- Generating element $v \in R$.
- $\mathcal{B}_{\text {Rot }}(v)=\left\{b_{i} \in R \mid b_{i}=v \cdot x^{i}\right\}_{i \in\{0, \ldots, d-1\}}$.

Important Feature:

- Basis vectors are (almost) orthogonal.
- $R \bmod \mathcal{B}_{\text {Rot }}(v)$ contains a large ball around zero.

Lattice Basis - Rotation Basis

- Generating element $v \in R$.
- $\mathcal{B}_{\text {Rot }}(v)=\left\{b_{i} \in R \mid b_{i}=v \cdot x^{i}\right\}_{i \in\{0, \ldots, d-1\}}$.

Important Feature:

- Basis vectors are (almost) orthogonal.
- $R \bmod \mathcal{B}_{\text {Rot }}(v)$ contains a large ball around zero.

Lattice Basis - Rotation Basis

- Generating element $v \in R$.
- $\mathcal{B}_{\text {Rot }}(v)=\left\{b_{i} \in R \mid b_{i}=v \cdot x^{i}\right\}_{i \in\{0, \ldots, d-1\}}$.

Important Feature:

- Basis vectors are (almost) orthogonal.
- $R \bmod \mathcal{B}_{\text {Rot }}(v)$ contains a large ball around zero.

Lattice Basis - Hermite Normal Form

Definition:

- A matrix $H \in \mathbb{Z}^{d \times d}$ is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- HNF can be computed from any basis.
- Unique HNF per lattice.
\Rightarrow HNF is least revealing basis.

Lattice Basis - Hermite Normal Form

Definition:

- A matrix $H \in \mathbb{Z}^{d \times d}$ is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- HNF can be computed from any basis.
- Unique HNF per lattice.
\Rightarrow HNF is least revealing basis.

Lattice Basis - Hermite Normal Form

Definition:

- A matrix $H \in \mathbb{Z}^{d \times d}$ is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- HNF can be computed from any basis.
- Unique HNF per lattice.

HNF is least revealing basis.

Lattice Basis - Hermite Normal Form

Definition:

- A matrix $H \in \mathbb{Z}^{d \times d}$ is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- HNF can be computed from any basis.
- Unique HNF per lattice.
\Rightarrow HNF is least revealing basis.

Rotation Basis vs Hermite Normal Form

Rotation Basis vs Hermite Normal Form

Gentry's Encryption Scheme [Gen09; GH11]

- Two ideals I and J in ring R.
- Ideal $I=2 R$ defines the plaintext space R / I
- Ideal J defines the ciphertext space R / J.
- A "powerful" basis is used as secret key (rotation basis)
- A "weak" basis is used as public key (HNF)

Gentry's Encryption Scheme [Gen09; GH11]

- Two ideals I and J in ring R.
- Ideal $I=2 R$ defines the plaintext space R / I.
- Ideal J defines the ciphertext space R / J.
- A "powerful" basis is used as secret key (rotation basis)
- A "weak" basis is used as public key (HNF)

Gentry's Encryption Scheme [Gen09; GH11]

- Two ideals I and J in ring R.
- Ideal $I=2 R$ defines the plaintext space R / I.
- Ideal J defines the ciphertext space R / J.
- A "powerful" basis is used as secret key (rotation basis).
- A "weak" basis is used as public key (HNF)

Gentry's Encryption Scheme [Gen09; GH11]

- Two ideals I and J in ring R.
- Ideal $I=2 R$ defines the plaintext space R / I.
- Ideal J defines the ciphertext space R / J.
- A "powerful" basis is used as secret key (rotation basis).
- A "weak" basis is used as public key (HNF).

Gentry's Encryption Scheme [Gen09; GH11]

- Two ideals I and J in ring R.
- Ideal $I=2 R$ defines the plaintext space R / I.
- Ideal J defines the ciphertext space R / J.
- A "powerful" basis is used as secret key (rotation basis).
- A "weak" basis is used as public key (HNF).

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring R, and basis B_{I} of ideal $I=2 R$.
- Generate ideal J co-prime to I and two bases $\left(B_{J}^{s k}, B_{J}^{p k}\right)$
- Return $p k \leftarrow\left(R, B_{I}, B_{J}^{p k}\right)$ and $s k \leftarrow\left(R, B_{I}, B_{J}^{s k}\right)$.
\square
- Sample noise $r I \in I$ with $r_{i} \leftarrow\{0, \pm 1\}$
- Return $c \leftarrow m+r I \bmod B_{J}^{p k}=m+2 r+b$ for $b \in J$

Decrypt(sk, c)

- Return $m \leftarrow\left(c \bmod B_{J}^{s k}\right) \bmod B_{I}$

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1^{κ})

- Fix ring R, and basis B_{I} of ideal $I=2 R$.
- Generate ideal J co-prime to I and two bases $\left(B_{J}^{s k}, B_{J}^{p k}\right)$.
- Return $p k \leftarrow\left(R, B_{I}, B_{J}^{p k}\right)$ and $s k \leftarrow\left(R, B_{I}, B_{J}^{s k}\right)$
\square
- Sample noise $r I \in I$ with $r_{i} \&\{0, \pm 1\}$
\Rightarrow Return $c \leftarrow m+r I \bmod B_{J}^{p k}=m+2 r+b$ for $b \in J$

Decrypt(sk, c)

- Return $m \leftarrow\left(c \bmod B_{J}^{s k}\right) \bmod B_{I}$

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring R, and basis B_{I} of ideal $I=2 R$.
- Generate ideal J co-prime to I and two bases $\left(B_{J}^{s k}, B_{J}^{p k}\right)$.
- Return $p k \leftarrow\left(R, B_{I}, B_{J}^{p k}\right)$ and $s k \leftarrow\left(R, B_{I}, B_{J}^{s k}\right)$.
\square
- Sample noise $r I \in I$ with $r_{i} \stackrel{\{0, \pm 1\}}{\leftarrow}$
- Return $c \leftarrow m+r I \bmod B_{J}^{p k}=m+2 r+b$ for $b \in J$
\square
- Return $m \leftarrow\left(c \bmod B_{J}^{s k}\right) \bmod B_{I}$

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring R, and basis B_{I} of ideal $I=2 R$.
- Generate ideal J co-prime to I and two bases $\left(B_{J}^{s k}, B_{J}^{p k}\right)$.
- Return $p k \leftarrow\left(R, B_{I}, B_{J}^{p k}\right)$ and $s k \leftarrow\left(R, B_{I}, B_{J}^{s k}\right)$.

Encrypt($p k, m$)

- Sample noise $r I \in I$ with $r_{i}\{0, \pm 1\}$.
- Return $c \leftarrow m+r I \bmod B_{J}^{p k}=m+2 r+b$ for $b \in J$

Decrypt(sk, c)

- Return $m \leftarrow\left(c \bmod B_{J}^{s k}\right) \bmod B_{I}$.

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring R, and basis B_{I} of ideal $I=2 R$.
- Generate ideal J co-prime to I and two bases $\left(B_{J}^{s k}, B_{J}^{p k}\right)$.
- Return $p k \leftarrow\left(R, B_{I}, B_{J}^{p k}\right)$ and $s k \leftarrow\left(R, B_{I}, B_{J}^{s k}\right)$.

Encrypt($p k, m$)

- Sample noise $r I \in I$ with $r_{i} \leftarrow\{0, \pm 1\}$.
- Return $c \leftarrow m+r I \bmod B_{J}^{p k}=m+2 r+b$ for $b \in J$.

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring R, and basis B_{I} of ideal $I=2 R$.
- Generate ideal J co-prime to I and two bases $\left(B_{J}^{s k}, B_{J}^{p k}\right)$.
- Return $p k \leftarrow\left(R, B_{I}, B_{J}^{p k}\right)$ and $s k \leftarrow\left(R, B_{I}, B_{J}^{s k}\right)$.

Encrypt($p k, m$)

- Sample noise $r I \in I$ with $r_{i} \leftarrow\{0, \pm 1\}$.
- Return $c \leftarrow m+r I \bmod B_{J}^{p k}=m+2 r+b$ for $b \in J$.

Decrypt $(s k, c)$

- Return $m \leftarrow\left(c \bmod B_{J}^{s k}\right) \bmod B_{I}$.

Gentry's Encryption Scheme - Homomorphic Operations

- Ring operations reflect operations on plaintext.

Gentry's Encryption Scheme - Homomorphic Operations

- Ring operations reflect operations on plaintext.
- $c_{1}=m_{2}+2 r_{1}+b_{1}$.
- $c_{2}=m_{2}+2 r_{2}+b_{2}$.
$\triangleright c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(r_{1} m_{2}+r_{1} r_{2}+r_{2} m_{1}\right)+b$
\checkmark Can decrypt as long as noise stays small.

Gentry's Encryption Scheme - Homomorphic Operations

- Ring operations reflect operations on plaintext.
- $c_{1}=m_{2}+2 r_{1}+b_{1}$.
- $c_{2}=m_{2}+2 r_{2}+b_{2}$.
- $c_{1}+c_{2}=\left(m_{1}+m_{2}\right)+2\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)$.
\checkmark Can decrypt as long as noise stays small.

Gentry's Encryption Scheme - Homomorphic Operations

- Ring operations reflect operations on plaintext.
- $c_{1}=m_{2}+2 r_{1}+b_{1}$.
- $c_{2}=m_{2}+2 r_{2}+b_{2}$.
- $c_{1}+c_{2}=\left(m_{1}+m_{2}\right)+2\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)$.
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(r_{1} m_{2}+r_{1} r_{2}+r_{2} m_{1}\right)+b \cdot \ldots$
\checkmark Can decrypt as long as noise stays small.

Gentry's Encryption Scheme - Homomorphic Operations

- Ring operations reflect operations on plaintext.
- $c_{1}=m_{2}+2 r_{1}+b_{1}$.
- $c_{2}=m_{2}+2 r_{2}+b_{2}$.
- $c_{1}+c_{2}=\left(m_{1}+m_{2}\right)+2\left(r_{1}+r_{2}\right)+\left(b_{1}+b_{2}\right)$.
- $c_{1} \cdot c_{2}=m_{1} \cdot m_{2}+2\left(r_{1} m_{2}+r_{1} r_{2}+r_{2} m_{1}\right)+b \cdot \ldots$
\checkmark Can decrypt as long as noise stays small.

BGV Encryption Scheme (simplified) [BGV14; Car+18]

$\operatorname{KeyGen}\left(1^{\kappa}\right)$

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{R}{\leftarrow}$.
- Sample $B \stackrel{(}{ }$
- Sample $e R_{2}$.
- $b \leftarrow B s+2 e$.
- Return $s k \leftarrow \mathbf{s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \leftarrow R_{2}$.
- Sample $B \stackrel{R_{q}}{\leftarrow}$
- Sample $e R_{2}$
$\Rightarrow b \leftarrow B s+2 e$.
- Return $s k \leftarrow \mathbf{s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1 1^{κ})

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{\oplus}{\leftarrow}$.
- Sample $B \leftarrow R_{q}$
- Sample $e \stackrel{R}{\leftarrow}$.
- Return $s k \leftarrow \mathbf{s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1^{κ})

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{\oplus}{\leftarrow}$.
- Sample $B \stackrel{セ}{\leftarrow} R_{q}$.
- Sample $e \leftarrow R_{2}$.
- Return $s k \leftarrow \mathbf{s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1 1^{κ})

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{\oplus}{\leftarrow}$.
- Sample $B \stackrel{セ}{\leftarrow} R_{q}$.
- Sample $e \stackrel{\oplus}{\leftarrow}$.
- Return $s k \leftarrow \mathrm{~s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{\oplus}{\leftarrow}$.
- Sample $B \stackrel{セ}{\leftarrow} R_{q}$.
- Sample $e \stackrel{\oplus}{\leftarrow}$.
- $b \leftarrow B s+2 e$.
- Return $s k \leftarrow \mathrm{~s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen $\left(1^{\kappa}\right)$

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{\oplus}{\leftarrow}$.
- Sample $B \stackrel{R_{q}}{\leftarrow}$.
- Sample $e \stackrel{\oplus}{\leftarrow} R_{2}$.
- $b \leftarrow B s+2 e$.
- Return $s k \leftarrow \mathbf{s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note:

BGV Encryption Scheme (simplified) [BGV14; Car+18]

$\operatorname{KeyGen}\left(1^{\kappa}\right)$

- Fix ring $R=\mathbb{Z}[x] / \Phi(x)$ as before.
- Pick modulus q and let $R_{q}=R / q R$.
- Sample $s \stackrel{\oplus}{\leftarrow}$.
- Sample $B \stackrel{R_{q}}{\leftarrow}$.
- Sample $e \stackrel{\oplus}{\leftarrow}$.
- $b \leftarrow B s+2 e$.
- Return $s k \leftarrow \mathbf{s}=(1, s), p k \leftarrow \mathbf{A}=(b,-B)$.
- Note: $\langle\mathbf{A}, \mathbf{s}\rangle=1 \cdot b-B \cdot s=2 e$.

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt($p k, m$)

- $\mathbf{m} \leftarrow(m, 0)$.
- Return $\mathbf{c} \leftarrow \mathrm{m}+r \cdot \mathbf{A} \in R_{q}^{2}$

Decrypt(sk, c)

- Return $m \leftarrow\langle\mathbf{c}, \mathbf{s}\rangle \bmod 2$
- Note: $\langle c, s\rangle=m+r(B s+2 e)-r B s=m+2 r e$

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt($p k, m$)

- $\mathbf{m} \leftarrow(m, 0)$.
- $r R_{2}$.
- Return $\mathrm{c} \leftarrow \mathrm{m}+r \cdot \mathrm{~A} \in R_{q}^{2}$

Decrypt(sk, c)

- Return $m \leftarrow\langle\mathbf{c}$, s $\rangle \bmod 2$
\Rightarrow Note: $\langle\mathbf{c}, \mathrm{s}\rangle=m+r(B s+2 e)-r B s=m+2 r e$

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt $(p k, m)$

- $\mathbf{m} \leftarrow(m, 0)$.
- $r \stackrel{R}{\leftarrow}$.
- Return $\mathbf{c} \leftarrow \mathbf{m}+r \cdot \mathbf{A} \in R_{q}^{2}$.

Decrypt(sk, c)

- Return $m \leftarrow\langle\mathbf{c}, s\rangle \bmod 2$
- Note: $\langle\mathbf{c}, \mathrm{s}\rangle=m+r(B s+2 e)-r B s=m+2 r e$.

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt $(p k, m)$

- $\mathbf{m} \leftarrow(m, 0)$.
- $r R_{2}$.
- Return $\mathbf{c} \leftarrow \mathbf{m}+r \cdot \mathbf{A} \in R_{q}^{2}$.

Decrypt($s k, \mathbf{c}$)

- Return $m \leftarrow\langle\mathbf{c}, \mathbf{s}\rangle \bmod 2$.
- Note: $\langle\mathrm{c}, \mathrm{s}\rangle=m+r(B s+2 e)-r B s=m+2 r e$.

BGV Encryption Scheme (simplified) [BGV14; Car+18]

$\operatorname{Encrypt}(p k, m)$

- $\mathbf{m} \leftarrow(m, 0)$.
- $r R_{2}$.
- Return $\mathbf{c} \leftarrow \mathbf{m}+r \cdot \mathbf{A} \in R_{q}^{2}$.

Decrypt($s k, \mathbf{c}$)

- Return $m \leftarrow\langle\mathbf{c}, \mathbf{s}\rangle \bmod 2$.
- Note: $\langle\mathbf{c}, \mathbf{s}\rangle=m+r(B s+2 e)-r B s=m+2 r e$.

BGV Encryption Scheme - Homomorphic Operations

- Adding two ciphertexts adds their plaintext:

$$
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle+\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle=\left\langle\mathbf{c}_{1}+\mathbf{c}_{2}, \mathbf{s}\right\rangle
$$

- Multiplication is more difficult:
- "Key switching" (Out of scope)

BGV Encryption Scheme - Homomorphic Operations

- Adding two ciphertexts adds their plaintext:

$$
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle+\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle=\left\langle\mathbf{c}_{1}+\mathbf{c}_{2}, \mathbf{s}\right\rangle
$$

- Multiplication is more difficult:

$$
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle \cdot\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle=\mathbf{c}_{1}^{t}(\mathbf{s} \oplus \mathbf{s}) \mathbf{c}_{2}=\left\langle\mathbf{c}_{1} \oplus \mathbf{c}_{2}, \mathbf{s} \oplus \mathbf{s}\right\rangle
$$

- "Key switching" (Out of scope)

BGV Encryption Scheme - Homomorphic Operations

- Adding two ciphertexts adds their plaintext:

$$
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle+\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle=\left\langle\mathbf{c}_{1}+\mathbf{c}_{2}, \mathbf{s}\right\rangle
$$

- Multiplication is more difficult:

$$
\left\langle\mathbf{c}_{1}, \mathbf{s}\right\rangle \cdot\left\langle\mathbf{c}_{2}, \mathbf{s}\right\rangle=\mathbf{c}_{1}^{t}(\mathbf{s} \oplus \mathbf{s}) \mathbf{c}_{2}=\left\langle\mathbf{c}_{1} \oplus \mathbf{c}_{2}, \mathbf{s} \oplus \mathbf{s}\right\rangle
$$

- "Key switching" (Out of scope)

Ciphertext Switching

Switching Ciphertexts [Car+18]

- FHE computation: BGV scheme.
- ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
- Encrypt BGV secret key under Gentry.
- Decrypt homomorphically.

Switching Ciphertexts [Car+18]

- FHE computation: BGV scheme.
- ZK proof: Gentry's scheme.
- Switch ciphertext via bootstrapping-like approach:
- Encrypt BGV secret key under Gentry.
- Decrypt homomorphically.

Switching Ciphertexts [Car+18]

- FHE computation: BGV scheme.
- ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
- Encrypt BGV secret key under Gentry.
- Decrypt homomorphically.

Switching Ciphertexts [Car+18]

- FHE computation: BGV scheme.
- ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
- Encrypt BGV secret key under Gentry.
- Decrypt homomorphically.

Switching Ciphertexts [Car+18]

- FHE computation: BGV scheme.
- ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
- Encrypt BGV secret key under Gentry.
- Decrypt homomorphically.

Match Ciphertext Spaces

- Ciphertext Spaces:
- Gentry: $R \bmod B_{J}^{p k}$.
- Require $q R \subset J$, i.e. $q=B^{p i} \cdot t$ with $t \in \mathbb{Z}^{d}$
- For $x \in R$ we have: $(x \bmod q) \bmod B_{J}^{p k}=x \bmod B_{J}^{p k}$.

Match Ciphertext Spaces

- Ciphertext Spaces:
- BGV: R_{q}^{2}.
- Gentry: R mod $B_{j}^{p k}$
- Require $q R \subset J$, i.e. $q=B_{J}^{p k} \cdot t$ with $t \in \mathbb{Z}^{d}$.
- For $x \in R$ we have: $(x \bmod q) \bmod B_{J}^{p k}=x \bmod B_{J}^{p k}$

Match Ciphertext Spaces

- Ciphertext Spaces:
- BGV: R_{q}^{2}.
- Gentry: $R \bmod B_{J}^{p k}$.
- Require $q R \subset J$, i.e. $q=B_{J}^{p k} \cdot t$ with $t \in \mathbb{Z}^{d}$
- For $x \in R$ we have: $(x \bmod q) \bmod B_{J}^{p k}=x \bmod B_{J}^{p k}$

Match Ciphertext Spaces

- Ciphertext Spaces:
- BGV: R_{q}^{2}.
- Gentry: $R \bmod B_{J}^{p k}$.
- Require $q R \subset J$, i.e. $q=B_{J}^{p k} \cdot t$ with $t \in \mathbb{Z}^{d}$.
- For $x \in R$ we have: $(x \bmod q) \bmod B_{J}^{p k}=x \bmod B_{J}^{p k}$

Match Ciphertext Spaces

- Ciphertext Spaces:
- BGV: R_{q}^{2}.
- Gentry: $R \bmod B_{J}^{p k}$.
- Require $q R \subset J$, i.e. $q=B_{J}^{p k} \cdot t$ with $t \in \mathbb{Z}^{d}$.
- For $x \in R$ we have: $(x \bmod q) \bmod B_{J}^{p k}=x \bmod B_{J}^{p k}$.

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:

- BGV secret key $\mathbf{s}=(1, s) \in R_{q}^{2}$.
- Encrypt secret key $\{s\}_{G}=s+2 r+b \in\left(R \bmod B_{J}^{p k}\right)$

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{\mathrm{BGV}}=\mathbf{c}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ with $\langle\mathrm{c}, \mathrm{s}\rangle=m+2 e$
- Decrypt BGV ciphertext with encrypted private key!

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:

- BGV secret key $\mathbf{s}=(1, s) \in R_{q}^{2}$.
- $s \in R_{2}=R / I$.
- Encrypt secret key $\{s\}_{G}=s+2 r+b \in\left(R \bmod B_{J}^{p k}\right)$

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{\mathrm{BGV}}=\mathrm{c}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ with $\langle\mathrm{c}, \mathrm{s}\rangle=m+2 e$.
- Decrypt BGV ciphertext with encrypted private key!

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:

- BGV secret key $\mathbf{s}=(1, s) \in R_{q}^{2}$.
- $s \in R_{2}=R / I$.
- Encrypt secret key $\{s\}_{\mathrm{G}}=s+2 r+b \in\left(R \bmod B_{J}^{p k}\right)$.

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{\mathrm{BGV}}=\mathbf{c}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ with $\langle\mathrm{c}, \mathrm{s}\rangle=m+2 e$
- Decrypt BGV ciphertext with encrypted private key!

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:

- BGV secret key $\mathbf{s}=(1, s) \in R_{q}^{2}$.
- $s \in R_{2}=R / I$.
- Encrypt secret key $\{s\}_{\mathrm{G}}=s+2 r+b \in\left(R \bmod B_{J}^{p k}\right)$.

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{\mathrm{BGV}}=\mathrm{c}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ with $\langle\mathrm{c}, \mathrm{s}\rangle=m+2 e$ - Decrypt BGV ciphertext with encrypted private key!

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:

- BGV secret key $\mathbf{s}=(1, s) \in R_{q}^{2}$.
- $s \in R_{2}=R / I$.
- Encrypt secret key $\{s\}_{G}=s+2 r+b \in\left(R \bmod B_{J}^{p k}\right)$.

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{\mathrm{BGV}}=\mathbf{c}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ with $\langle\mathbf{c}, \mathbf{s}\rangle=m+2 e$.
- Decrypt BGV ciphertext with encrypted private key!

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:

- BGV secret key $\mathbf{s}=(1, s) \in R_{q}^{2}$.
- $s \in R_{2}=R / I$.
- Encrypt secret key $\{s\}_{\mathrm{G}}=s+2 r+b \in\left(R \bmod B_{J}^{p k}\right)$.

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{\mathrm{BGV}}=\mathbf{c}=\left(c_{0}, c_{1}\right) \in R_{q}^{2}$ with $\langle\mathbf{c}, \mathbf{s}\rangle=m+2 e$.
- Decrypt BGV ciphertext with encrypted private key!

Homomorphically Decrypt BGV Ciphertext

- $\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)$.
- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.

Homomorphically Decrypt BGV Ciphertext

- $\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)$.
- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.

Homomorphically Decrypt BGV Ciphertext

$$
\begin{aligned}
& \left\langle\{m\}_{\mathrm{BGV}},\{\mathrm{~s}\}_{\mathrm{G}}\right\rangle \quad \bmod B_{J}^{p k} \\
= & c_{0}+c_{1} \cdot\{s\}_{\mathrm{G}} \\
= & c_{0}+c_{1} \cdot(s+2 r+b)
\end{aligned}
$$

$$
=c_{0}+c_{1} \cdot s+c_{1} \cdot(2 r+b)
$$

- $\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)$.
- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.
\checkmark Valid ciphertext if $m+2\left(e+c_{1} r\right)$ is small enough.

Homomorphically Decrypt BGV Ciphertext

$$
\begin{aligned}
& \left\langle\{m\}_{\mathrm{BGV}},\{\mathbf{s}\}_{\mathrm{G}}\right\rangle \quad \bmod B_{J}^{p k} \\
= & c_{0}+c_{1} \cdot\{s\}_{\mathrm{G}} \\
= & c_{0}+c_{1} \cdot(s+2 r+b) \\
= & c_{0}+c_{1} \cdot s+c_{1} \cdot(2 r+b) \\
= & m+2 e+k q+2 c_{1} r+c_{1} b \\
= & \underbrace{m+2\left(e+c_{1} r\right)}_{\text {Noise }}+\underbrace{\left(k q+c_{1} b\right)}_{\text {Lattice point }}
\end{aligned}
$$

- $\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)$.
- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.
\checkmark Valid ciphertext if $m+2\left(e+c_{1} r\right)$ is small enough.

Homomorphically Decrypt BGV Ciphertext

$$
\begin{aligned}
& \left\langle\{m\}_{\mathrm{BGV}},\{\mathbf{s}\}_{\mathrm{G}}\right\rangle \quad \bmod B_{J}^{p k} \\
= & c_{0}+c_{1} \cdot\{s\}_{\mathrm{G}} \\
= & c_{0}+c_{1} \cdot(s+2 r+b) \\
= & c_{0}+c_{1} \cdot s+c_{1} \cdot(2 r+b) \\
= & m+2 e+k q+2 c_{1} r+c_{1} b \\
= & \underbrace{m+2\left(e+c_{1} r\right)}_{\text {Noise }}+\underbrace{\left(k q+c_{1} b\right)}_{\text {Lattice point }}
\end{aligned}
$$

$$
-\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)
$$

- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.

Homomorphically Decrypt BGV Ciphertext

$$
\begin{aligned}
& \left\langle\{m\}_{\mathrm{BGV}},\{\mathbf{s}\}_{\mathrm{G}}\right\rangle \quad \bmod B_{J}^{p k} \\
= & c_{0}+c_{1} \cdot\{s\}_{\mathrm{G}} \\
= & c_{0}+c_{1} \cdot(s+2 r+b) \\
= & c_{0}+c_{1} \cdot s+c_{1} \cdot(2 r+b) \\
= & m+2 e+k q+2 c_{1} r+c_{1} b \\
= & \underbrace{m+2\left(e+c_{1} r\right)}_{\text {Noise }}+\underbrace{\left(k q+c_{1} b\right)}_{\text {Lattice point } \in J}
\end{aligned}
$$

- $\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)$.
- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.
\checkmark Valid ciphertext if $m+2\left(e+c_{1} r\right)$ is small enough.

Homomorphically Decrypt BGV Ciphertext

$$
\begin{aligned}
& \left\langle\{m\}_{\mathrm{BGV}},\{\mathbf{s}\}_{\mathrm{G}}\right\rangle \quad \bmod B_{J}^{p k} \\
= & c_{0}+c_{1} \cdot\{s\}_{\mathrm{G}} \\
= & c_{0}+c_{1} \cdot(s+2 r+b) \\
= & c_{0}+c_{1} \cdot s+c_{1} \cdot(2 r+b) \\
= & m+2 e+k q+2 c_{1} r+c_{1} b \\
= & \underbrace{m+2\left(e+c_{1} r\right)}_{\text {Noise }}+\underbrace{\left(k q+c_{1} b\right)}_{\text {Lattice point } \in J}
\end{aligned}
$$

- $\{m\}_{\mathrm{BGV}}=\left(c_{0}, c_{1}\right)$.
- $\{s\}_{\mathrm{G}}=s+2 r+b$.
- $c_{0}+c_{1} \cdot s=m+2 e \bmod q$.
- $q \in J$.
\checkmark Valid ciphertext if $m+2\left(e+c_{1} r\right)$ is small enough.

Zero-Knowledge Proof of Decryption

Sigma Protocol

$$
\text { Prover } P \quad \text { Verifier } V
$$

- Prover P and Verifier V.
- P sends commitment I.
- V sends challenge e.

Commitment I

- P sends response r.
- V verifies.

Challenge e

Response r

Sigma Protocol

- Prover P and Verifier V.
- P sends commitment I.

$$
\text { Prover } P \quad \text { Verifier } V
$$

Commitment I
Challenge e

Response r

Sigma Protocol

- Prover P and Verifier V.
- P sends commitment I.
- V sends challenge e.

Prover P
Verifier V
$\xrightarrow{\text { Commitment } I}$
Challenge e

- P sends response r.
- V verifies.

Sigma Protocol

- Prover P and Verifier V.
- P sends commitment I.
- V sends challenge e.
- P sends response r.

Prover P

Verifier V
$\xrightarrow{\text { Commitment } I}$
Challenge e

Response r

Sigma Protocol

- Prover P and Verifier V.
- P sends commitment I.
- V sends challenge e.
- P sends response r.
- V verifies.

Prover P

Verifier V

Challenge e

Response r

(Wanted) Properties

Correctness:

- Can a true statement be proven?

Special Soundness:

- Given two transcrints $\left(I, e_{0}, r_{0}\right)$ and $\left(I, e_{1}, r_{1}\right)$
- Can we compute the secret?

Special Honest Verifier Zero-Knowledge:

- Given challenge e.
- Can transcripts be generated without knowledge of secret?

(Wanted) Properties

Correctness:

- Can a true statement be proven?

Special Soundness:

- Given two transcripts $\left(I, e_{0}, r_{0}\right)$ and $\left(I, e_{1}, r_{1}\right)$.
- Can we compute the secret?

Special Honest Verifier Zero-Knowledge:

- Given challenge e
- Can transcripts be generated without knowledge of secret?

(Wanted) Properties

Correctness:

- Can a true statement be proven?

Special Soundness:

- Given two transcripts $\left(I, e_{0}, r_{0}\right)$ and $\left(I, e_{1}, r_{1}\right)$.
- Can we compute the secret?

Special Honest Verifier Zero-Knowledge:

- Given challenge e.
- Can transcripts be generated without knowledge of secret?

The ZK Protocol [Car+18]

Statement: A given ciphertext $c=m+2 r+b$ is an encryption of 0 .

P Choose encryption $c^{\prime}=2 r^{\prime}+b^{\prime}$ of 0 . Send c^{\prime} to the verifier.
V Choose challenge $e\{0,1\}$ uniformly at random. Send e to the prover
P Compute response $d \leftarrow e \cdot b+b^{\prime}$. Send d to the verifier
\checkmark Verify that d is a valid lattice point, and check that $e \cdot c+c^{\prime}-d$ is well formed and sufficiently small.

Transcript: $\left(c^{\prime}, e, d\right)$.

The ZK Protocol [Car+18]

Statement: A given ciphertext $c=m+2 r+b$ is an encryption of 0 .
P Choose encryption $c^{\prime}=2 r^{\prime}+b^{\prime}$ of 0 . Send c^{\prime} to the verifier.
V Choose challenge $e \leftarrow\{0,1\}$ uniformly at random. Send e to the prover
P Compute response $d \leftarrow e \cdot b+b^{\prime}$. Send d to the verifier
V Verify that d is a valid lattice noint, and check that $e \cdot c+c^{\prime}-d$ is well formed and sufficiently small.

Transcript: $\left(c^{\prime}, e, d\right)$.

The ZK Protocol [Car+18]

Statement: A given ciphertext $c=m+2 r+b$ is an encryption of 0 .
P Choose encryption $c^{\prime}=2 r^{\prime}+b^{\prime}$ of 0 . Send c^{\prime} to the verifier.
\vee Choose challenge $e \stackrel{\leftarrow}{\leftarrow}\{0,1\}$ uniformly at random. Send e to the prover.
P Compute response $d \leftarrow e \cdot b+b^{\prime}$. Send d to the verifier
\checkmark Verify that d is a valid lattice point, and check that $e \cdot c+c^{\prime}-d$ is well formed and sufficiently small.

Transcript: $\left(c^{\prime}, e, d\right)$

The ZK Protocol [Car+18]

Statement: A given ciphertext $c=m+2 r+b$ is an encryption of 0 .
P Choose encryption $c^{\prime}=2 r^{\prime}+b^{\prime}$ of 0 . Send c^{\prime} to the verifier.
\vee Choose challenge $e \stackrel{\Perp}{\leftarrow}\{0,1\}$ uniformly at random. Send e to the prover.
P Compute response $d \leftarrow e \cdot b+b^{\prime}$. Send d to the verifier.

V Verify that d is a valid lattice point, and check that $e \cdot c+c^{\prime}-d$ is well formed and sufficiently small.

Transcript: $\left(c^{\prime}, e, d\right)$.

The ZK Protocol [Car+18]

Statement: A given ciphertext $c=m+2 r+b$ is an encryption of 0 .
P Choose encryption $c^{\prime}=2 r^{\prime}+b^{\prime}$ of 0 . Send c^{\prime} to the verifier.
\vee Choose challenge $e \stackrel{\oplus}{\leftarrow}\{0,1\}$ uniformly at random. Send e to the prover.
P Compute response $d \leftarrow e \cdot b+b^{\prime}$. Send d to the verifier.
\checkmark Verify that d is a valid lattice point, and check that $e \cdot c+c^{\prime}-d$ is well formed and sufficiently small.

Transcript: $\left(c^{\prime}, e, d\right)$

The ZK Protocol [Car+18]

Statement: A given ciphertext $c=m+2 r+b$ is an encryption of 0 .
P Choose encryption $c^{\prime}=2 r^{\prime}+b^{\prime}$ of 0 . Send c^{\prime} to the verifier.
\vee Choose challenge $e \stackrel{\oplus}{\leftarrow}\{0,1\}$ uniformly at random. Send e to the prover.
P Compute response $d \leftarrow e \cdot b+b^{\prime}$. Send d to the verifier.
\checkmark Verify that d is a valid lattice point, and check that $e \cdot c+c^{\prime}-d$ is well formed and sufficiently small.

Transcript: $\left(c^{\prime}, e, d\right)$.

Correctness

If the statement is correct, then V verifies:
$\checkmark d \in J$ is a valid lattice point. By definition, b and b^{\prime} are lattice points. $\checkmark e \cdot c+c^{\prime}-d$ is well formed and sufficiently small. This is $2\left(e \cdot r+r^{\prime}\right)$, which is the noise vector of $e \cdot c+c^{\prime}$.

Correctness

If the statement is correct, then V verifies:
$\checkmark d \in J$ is a valid lattice point. By definition, b and b^{\prime} are lattice points.
$\checkmark e \cdot c+c^{\prime}-d$ is well formed and sufficiently small. This is $2\left(e \cdot r+r^{\prime}\right)$, which is the noise vector of $e \cdot c+c^{\prime}$.

Correctness

If the statement is correct, then V verifies:
$\checkmark d \in J$ is a valid lattice point. By definition, b and b^{\prime} are lattice points.
$\checkmark e \cdot c+c^{\prime}-d$ is well formed and sufficiently small. This is $2\left(e \cdot r+r^{\prime}\right)$, which is the noise vector of $e \cdot c+c^{\prime}$.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.

Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.

Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.
Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.
Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.

Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

$$
\begin{aligned}
& \left(e_{1}-e_{0}\right)^{-1} \cdot\left(d_{1}-d_{0}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1} b+b^{\prime}-e_{0} b-b^{\prime}\right)
\end{aligned}
$$

$$
=\left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1}-e_{0}\right) \cdot b
$$

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.

Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

$$
\begin{aligned}
& \left(e_{1}-e_{0}\right)^{-1} \cdot\left(d_{1}-d_{0}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1} b+b^{\prime}-e_{0} b-b^{\prime}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1}-e_{0}\right) \cdot b
\end{aligned}
$$

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.

Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

$$
\begin{aligned}
& \left(e_{1}-e_{0}\right)^{-1} \cdot\left(d_{1}-d_{0}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1} b+b^{\prime}-e_{0} b-b^{\prime}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1}-e_{0}\right) \cdot b \\
= & b
\end{aligned}
$$

\checkmark Witness b can be computed.

Special Soundness

- If we know $b \in J$ from $c=m+2 r+b$, we can get m.
$\Rightarrow b$ is a witness for the statement we want to prove.

Given two transcripts with same commitment: $\left(c^{\prime}, e_{0}, d_{0}\right)$ and $\left(c^{\prime}, e_{1}, d_{1}\right)$.

$$
\begin{aligned}
& \left(e_{1}-e_{0}\right)^{-1} \cdot\left(d_{1}-d_{0}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1} b+b^{\prime}-e_{0} b-b^{\prime}\right) \\
= & \left(e_{1}-e_{0}\right)^{-1} \cdot\left(e_{1}-e_{0}\right) \cdot b \\
= & b
\end{aligned}
$$

\checkmark Witness b can be computed.

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
$>$ I.e. Simulator exists, that generates transcripts for arbitrary challenges

Simulator (c, e)

- Sample* random noise vector $\hat{\gamma}$
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- Output transcript $\left(c^{\prime}, e, d\right)$.
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b.

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e).

- Sample* random noise vector $\hat{\imath}$
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- Output transcript $\left(c^{\prime}, e, d\right)$
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b.

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e):

- Sample* random noise vector \hat{r}.
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- $c^{\prime} \leftarrow \hat{c}-e \cdot c$.
- Outnut transcrint ($\left.c^{\prime}, e, d\right)$
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b.

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e) :

- Sample* random noise vector \hat{r}.
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- Output transcript $\left(c^{\prime}, e, d\right)$
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b.

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e):

- Sample* random noise vector \hat{r}.
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- $c^{\prime} \leftarrow \hat{c}-e \cdot c$.
- Output transcript $\left(c^{\prime}, e, d\right)$.
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e):

- Sample* random noise vector \hat{r}.
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- $c^{\prime} \leftarrow \hat{c}-e \cdot c$.
- Output transcript $\left(c^{\prime}, e, d\right)$.

[^0]
Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e) :

- Sample* random noise vector \hat{r}.
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- $c^{\prime} \leftarrow \hat{c}-e \cdot c$.
- Output transcript $\left(c^{\prime}, e, d\right)$.
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b.

Special Honest-Verifier Zero-Knowledge

- Honest verifier should not learn anything from an execution of the protocol.
- I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator (c, e):

- Sample* random noise vector \hat{r}.
- Compute lattice point $d \in J$ corresponding to $2 \hat{r}$. I.e. $\hat{c}=2 \hat{r}+d$.
- $c^{\prime} \leftarrow \hat{c}-e \cdot c$.
- Output transcript $\left(c^{\prime}, e, d\right)$.
\checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise.
\checkmark Honest verifier does not learn anything about b.

Remarks on Fully Homomorphic Encryption Schemes

- Single bit plaintexts with current construction.
- Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
- Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
- Ensure that encrypted secret key during key switching is later used in ZK proof.
- Addressed in [Car+18]: verify integrity of single message.
- Doubt that this is enough!

Remarks on Fully Homomorphic Encryption Schemes

- Single bit plaintexts with current construction.
- Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
- Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
- Ensure that encrypted secret key during key switching is later used in ZK proof.
- Addressed in [Car+18]: verify integrity of single message.
- Doubt that this is enough!

Remarks on Fully Homomorphic Encryption Schemes

- Single bit plaintexts with current construction.
- Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
- Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
- Ensure that encrypted secret key during key switching is later used in ZK proof.
- Addressed in [Car+18]: verify integrity of single message.
- Doubt that this is enough!

Remarks on Fully Homomorphic Encryption Schemes

- Single bit plaintexts with current construction.
- Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
- Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
- Ensure that encrypted secret key during key switching is later used in ZK proof.
- Addressed in [Car+18]: verify integrity of single message.
- Doubt that this is enough!

Remarks on Fully Homomorphic Encryption Schemes

- Single bit plaintexts with current construction.
- Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
- Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
- Ensure that encrypted secret key during key switching is later used in ZK proof.
- Addressed in [Car+18]: verify integrity of single message.
- Doubt that this is enough!

Remarks on Zero-Knowledge Proof of Decryption

- Challenge $e \in\{0,1\}$ too simple.
- With larger $e, e \cdot c+c^{\prime}$ might be undecryptable
\rightarrow choose parameters wisely.
- Maybe use $e \in R_{2}$?
- Do we really need a ZK protocol in the end?
- Only want to protect secret inputs + secret key.
- Isn't it enough to simply publish b 's from $c=m+2 r+b$?

Remarks on Zero-Knowledge Proof of Decryption

- Challenge $e \in\{0,1\}$ too simple.
- With larger $e, e \cdot c+c^{\prime}$ might be undecryptable \rightarrow choose parameters wisely.
- Maybe use $e \in R_{2}$?
- Do we really need a ZK protocol in the end?
- Only want to protect secret inputs + secret key.
- Isn't it enough to simply publish b 's from $c=m+2 r+b$?

Remarks on Zero-Knowledge Proof of Decryption

- Challenge $e \in\{0,1\}$ too simple.
- With larger $e, e \cdot c+c^{\prime}$ might be undecryptable \rightarrow choose parameters wisely.
- Maybe use $e \in R_{2}$?
- Do we really need a ZK protocol in the end?
- Only want to protect secret inputs + secret key.
- Isn't it enough to simply publish b 's from $c=m+2 r+b$?

Remarks on Zero-Knowledge Proof of Decryption

- Challenge $e \in\{0,1\}$ too simple.
- With larger $e, e \cdot c+c^{\prime}$ might be undecryptable \rightarrow choose parameters wisely.
- Maybe use $e \in R_{2}$?
- Do we really need a ZK protocol in the end?
- Only want to protect secret inputs + secret key.
- Isn't it enough to simply publish b 's from $c=m+2 r+b$?

Remarks on Zero-Knowledge Proof of Decryption

- Challenge $e \in\{0,1\}$ too simple.
- With larger $e, e \cdot c+c^{\prime}$ might be undecryptable \rightarrow choose parameters wisely.
- Maybe use $e \in R_{2}$?
- Do we really need a ZK protocol in the end?
- Only want to protect secret inputs + secret key.
- Isn't it enough to simply publish b 's from $c=m+2 r+b$?

Remarks on Zero-Knowledge Proof of Decryption

- Challenge $e \in\{0,1\}$ too simple.
- With larger $e, e \cdot c+c^{\prime}$ might be undecryptable \rightarrow choose parameters wisely.
- Maybe use $e \in R_{2}$?
- Do we really need a ZK protocol in the end?
- Only want to protect secret inputs + secret key.
- Isn't it enough to simply publish b 's from $c=m+2 r+b$?

Zero-Knowledge Proof of Decryption for FHE Ciphertexts

Thank you for your attention!

Questions?

References I

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) fully homomorphic encryption without bootstrapping". In: ACM Transactions on Computation Theory (TOCT) 6.3 (2014), p. 13.
[Car+18] Christopher Carr et al. Zero-Knowledge Proof of Decryption for FHE Ciphertexts. Tech. rep. Cryptology ePrint Archive, Report 2018/026, 2018. https://eprint.iacr.org/2018/026, 2018.
[Gen09] Craig Gentry. "Fully homomorphic encryption using ideal lattices". In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. ACM. 2009, pp. 169-178.
[GH11] Craig Gentry and Shai Halevi. "Implementing gentry's fully-homomorphic encryption scheme". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2011, pp. 129-148.

[^0]: \checkmark Transcript is valid. In particular $e \cdot c+c^{\prime}-d=2 \hat{r}$ is well-formed noise. \checkmark Honest verifier does not learn anything about b.

