Zero-Knowledge Proof of Decryption for FHE
Ciphertexts

Tom Kneiphof

June 28, 2018

/39

Scenario

» Multiple users with secret input.

39

Scenario

» Multiple users with secret input.

» Compute some function on inputs.

39

Scenario

» Multiple users with secret input.
» Compute some function on inputs.

» Everyone should be convinced that the output is indeed correct.

39

Scenario

v

Multiple users with secret input.

» Compute some function on inputs.

v

Everyone should be convinced that the output is indeed correct.

v

Inputs must not be revealed!

39

Multi-Party Computation

» Interactive protocol amongst n parties.

39

Multi-Party Computation

» Interactive protocol amongst n parties.

» Perform computation cooperatively (By some protocol).

39

Multi-Party Computation

» Interactive protocol amongst n parties.

» Perform computation cooperatively (By some protocol).

Problem:

» Everybody must be online.

39

Multi-Party Computation

» Interactive protocol amongst n parties.

» Perform computation cooperatively (By some protocol).

Problem:
» Everybody must be online.

» Asynchronous setting.

39

Multi-Party Computation

» Interactive protocol amongst n parties.

» Perform computation cooperatively (By some protocol).

Problem:
» Everybody must be online.
» Asynchronous setting.
» Large group setting.

39

Semi-Trusted Authority

» Authority is trusted to know the secret inputs.

39

Semi-Trusted Authority

» Authority is trusted to know the secret inputs.
» Authority is not trusted to perform correct computations.

39

Semi-Trusted Authority

» Authority is trusted to know the secret inputs.

» Authority is not trusted to perform correct computations.

» Use fully homomorphic encryption to perform computation on encrypted
inputs.

39

Semi-Trusted Authority

v

Authority is trusted to know the secret inputs.

v

Authority is not trusted to perform correct computations.

v

Use fully homomorphic encryption to perform computation on encrypted
inputs.

v

Get ciphertext of the output.

39

Semi-Trusted Authority

v

Authority is trusted to know the secret inputs.

v

Authority is not trusted to perform correct computations.

v

Use fully homomorphic encryption to perform computation on encrypted
inputs.

v

Get ciphertext of the output.

v

Authority decrypts and announces output.

39

Semi-Trusted Authority

v

Authority is trusted to know the secret inputs.

v

Authority is not trusted to perform correct computations.

v

Use fully homomorphic encryption to perform computation on encrypted
inputs.

v

Get ciphertext of the output.

v

Authority decrypts and announces output.

v

Authority proves correctness of output.

39

Semi-Trusted Authority

» Authority is trusted to know the secret inputs.

» Authority is not trusted to perform correct computations.

» Use fully homomorphic encryption to perform computation on encrypted
Inputs.

» Get ciphertext of the output.

» Authority decrypts and announces output.

» Authority proves correctness of output.

» Secrets must not be revealed!

39

Framework

BGV

Gentry's

Verified

Input ===~ Encryption == Encryption ==p» Output

Scheme

Scheme

5/39

Framework

FHE
computation

l

BGV

Gentry's

Verified

Input ===~ Encryption == Encryption ==p» Output

Scheme

Scheme

5/39

Framework

FHE
computation

l

BGV

Gentry's

Verified

Input === Encryption == Encryption ==p» Output

Scheme

Ciphertex
Switching

Scheme

5/39

Framework

FHE ZK proof of
computation decryption
BGV Gentry's

Verified

Input === Encryption == Encryption ==p» Output

Scheme Scheme

Ciphertex
Switching

5/39

Fully Homomorphic Encryption

/39

Circuits

» Think of hardware circuits.

39

Circuits

» Think of hardware circuits.
» Consist of gates (AND, OR, NAND, ...).

39

Circuits

» Think of hardware circuits.
» Consist of gates (AND, OR, NAND, ...).
» Here: Set of gates I' := {-, +}.

39

Circuits

» Think of hardware circuits.
» Consist of gates (AND, OR, NAND, ...).
» Here: Set of gates I' := {-, +}.

» Only consider functions that can be expressed as circuit of gates in I'.

39

Somewhat Homomorphic Encryption (SHE)

/39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk).

/39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk).
» Encrypte(pk,) — 1.

/39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk).
» Encrypte(pk,) — 1.
» Decrypte(sk,v) — 7.

39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk). » Set of permitted circuits Csg.
» Encrypte(pk,) — 1.
» Decrypte(sk,v) — 7.

39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk). » Set of permitted circuits Csg.

» Encrypte(pk,) — 1. > Evaluateg(pk, C, ¢, ... ¢) — ¥/,

» Decryptg(sk, 1)) — . CeCe.

39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk). » Set of permitted circuits Ce.

» Encrypte(pk,) — 1. > Evaluateg(pk, C, ¢, ... ¢) — ¥/,

» Decryptg(sk, 1)) — . CeCe.

Correctness:

For C' € Cg, plaintexts 7; and their encryption v; <— Encryptg(pk,m;), 1 <i < t:

Y < Evaluateg (pk, C, 41, ..., 1) = Decrypte(sk, ') = C(my, ..., m).

39

Somewhat Homomorphic Encryption (SHE)

» KeyGeng(1%) — (sk,pk). » Set of permitted circuits Ce.
» Encrypte(pk,) — 1. » Evaluateg(pk, C, 11, ... 0) — ¢,
C e€Cs.

» Decrypte(sk,v) — 7.

Correctness:

For C' € Cg, plaintexts 7; and their encryption v; <— Encryptg(pk,m;), 1 <i < t:

Y < Evaluateg (pk, C, 41, ..., 1) = Decrypte(sk, ') = C(my, ..., m).

» Ciphertext size and computation times in poly(x).

39

Fully Homomorphic Encryption (FHE)

/39

Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

» Cg¢ contains all circuits of a user chosen circuit depth.

» Ciphertext size must be independent of circuit depth.

39

Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

» Cg¢ contains all circuits of a user chosen circuit depth.

» Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:

» Cg contains all circuits.

39

Bootstrapping

» The following encryption schemes contain “noise”.

10/39

Bootstrapping

» The following encryption schemes contain “noise”.

» Can decrypt < Noise small.

10/39

Bootstrapping

» The following encryption schemes contain “noise”.
» Can decrypt < Noise small.

» Homomorphic operations — Noise grows — Can't decrypt.

10/39

Bootstrapping

v

The following encryption schemes contain “noise” .

v

Can decrypt < Noise small.

v

Homomorphic operations — Noise grows — Can't decrypt.

v

“Refresh” ciphertext after homomorphic operations.

10/39

Bootstrapping

v

The following encryption schemes contain “noise” .

v

Can decrypt < Noise small.

v

Homomorphic operations — Noise grows — Can't decrypt.

v

“Refresh” ciphertext after homomorphic operations.

Basic ldea:
» Encrypt ciphertext under new key.

» Evaluate decryption circuit homomorphically.

10/39

Bootstrapping

v

The following encryption schemes contain “noise” .

v

Can decrypt < Noise small.

v

v

“Refresh” ciphertext after homomorphic operations.

Basic ldea:
» Encrypt ciphertext under new key.

» Evaluate decryption circuit homomorphically.

v' Create (leveled) FHE scheme from SHE scheme.

Homomorphic operations — Noise grows — Can't decrypt.

10/39

Circular Security

Definition:
» SHE scheme & is circular secure, iff it is IND-CPA given encryptions of it
secret key bits.

11/39

Circular Security

Definition:
» SHE scheme & is circular secure, iff it is IND-CPA given encryptions of it
secret key bits.

» Bootstrapping: Encrypt ciphertext under same key.

11/39

Circular Security

Definition:
» SHE scheme & is circular secure, iff it is IND-CPA given encryptions of it
secret key bits.

» Bootstrapping: Encrypt ciphertext under same key.
» Don't have to chain secret keys to get leveled FHE from bootstrapping.

11/39

Circular Security

Definition:

» SHE scheme & is circular secure, iff it is IND-CPA given encryptions of it
secret key bits.

» Bootstrapping: Encrypt ciphertext under same key.
» Don't have to chain secret keys to get leveled FHE from bootstrapping.
» Get FHE scheme from single SHE secret key.

11/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).
» O(z) =2+ 1 with d = 2%

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).
» O(z) =2+ 1 with d = 2%
» Ring of polynomials with degree at most d — 1.

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

O(x) = 24+ 1 with d = 2°,

Ring of polynomials with degree at most d — 1.
» 27=—1 mod d(x).

v

v

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

O(x) = 24+ 1 with d = 2°,

Ring of polynomials with degree at most d — 1. L. .
» 27=—1 mod d(x). e e "”I_..

01
For a € Z[x]/®(x): coefficient vector a € Z. .

v

v

v

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).
O(x) = 24+ 1 with d = 2°,

Ring of polynomials with degree at most d — 1. L. .
» 27=—1 mod d(x). coe . "”(I)_l..
For a € Z[x]/®(x): coefficient vector a € Z. I I

Polynomial addition = vector addition.

v

v

v

v

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1. L. .
» 27=—1 mod d(x). coe . "K(I)_l..
» For a € Z[x]/®(x): coefficient vector a € Z. I I

» Polynomial addition = vector addition.

» Multiplication looks similar to complex numbers
(for d = 2)...

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).
» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1. . .r+2
» 27=—1 mod d(x). coe . "K(I)_l.. .

» For a € Z[x]/®(x): coefficient vector a € Z.
» Polynomial addition = vector addition.

» Multiplication looks similar to complex numbers
(for d = 2)...

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1.
» 27=—1 mod d(x).

» For a € Z[x]/®(x): coefficient vector a € Z.
» Polynomial addition = vector addition.

» Multiplication looks similar to complex numbers
(for d = 2)...

22 + 2

-

E i

0l

T+ 2

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1.
» 27=—1 mod d(x).

» For a € Z[x]/®(x): coefficient vector a € Z.
» Polynomial addition = vector addition.

» Multiplication looks similar to complex numbers
(for d = 2)...

2x —1

-

E i

0l

T+ 2

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1.
» 27=—1 mod d(x).

» For a € Z[x]/®(x): coefficient vector a € Z.
» Polynomial addition = vector addition.

T+ 2

» Multiplication looks similar to complex numbers
(for d = 2)...

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1.
» 27=—1 mod d(x).

» For a € Z[x]/®(x): coefficient vector a € Z.
» Polynomial addition = vector addition.

» Multiplication looks similar to complex numbers
(for d = 2)...

12/39

Polynomial Rings

» Common ring R = Z[z]/®(x).

» O(z) =2+ 1 with d = 2%

» Ring of polynomials with degree at most d — 1.
» 27=—1 mod d(x).

» For a € Z[x]/®(x): coefficient vector a € Z.
» Polynomial addition = vector addition. ot Eh

T+ 2

» Multiplication looks similar to complex numbers
(for d = 2)...

12/39

Ring Ideals

Definition: .. .
» [C R is called ideal iff for all a,b € I, r € R: e e e e
R

13/39

Ring Ideals

Definition: .. .
» [C R is called ideal iff for all a,b € I, r € R: e + + o 4 8 e a
> OGI . . . 3 °
R

13/39

Ring Ideals

Definition: .. .

» [C R is called ideal iff for all a,b € I, r € R: e + + o 4 8 e a
>OGI . . . 3 °
»a+bel. e e . . . e

13/39

Ring Ideals

Definition: .. .
» [C R is called ideal iff for all a,b € I, r € R: e + + o 4 8 e a
> OGI . . . 3 °
»a+bel. e e . . . e
»r-a€l. .« e e "E(I)_l.. .

13/39

Lattices & |deal Lattices

» Consider vector space R? and some basis B € Z*¢.

0l

14 /39

Lattices & |deal Lattices

» Consider vector space R? and some basis B € Z4*d, + =+ o = « « =« o

» Lattice L = L(B) is integer linear combination of

. °
columns in B. \/
. []

14 /39

Lattices & |deal Lattices

» Consider vector space R? and some basis B € Z4*d, + =+ o = « « =« o

» Lattice L = L(B) is integer linear combination of

columns in B. . e e e e e
» Infinite number of lattice bases for d > 2. . -

14 /39

Lattices & |deal Lattices

» Consider vector space R? and some basis B € Z4*d, + =+ o = « « =« o

» Lattice L = L(B) is integer linear combination of
columns in B.

» Infinite number of lattice bases for d > 2.

14 /39

Lattices & Ideal Lattices

» Consider vector space R? and some basis B € Z4*d, + =+ o = « « =« o

» Lattice L = L(B) is integer linear combination of ot :
columns in B. o te

> Infinite number of lattice bases for d > 2. . @

» ldeal lattice: Ring elements corresponding to Ce
elements in L form ideal. e e e e

14 /39

Lattices & Ideal Lattices

» Consider vector space R? and some basis B € Z4*d, ¢ « = = o+« . o
» Lattice L = L(B) is integer linear combination of et e
columns in B. t te
> Infinite number of lattice bases for d > 2. . . /‘D .
» ldeal lattice: Ring elements corresponding to U
elements in L form ideal. o+ e+ 8 e e« e e

14 /39

Lattices & Ideal Lattices

» Consider vector space R? and some basis B € Z4*d, ¢ « = = o+« . o
» Lattice L = L(B) is integer linear combination of et e
columns in B. v o
> Infinite number of lattice bases for d > 2. . . /‘D .
» ldeal lattice: Ring elements corresponding to T
elements in L form ideal. o o+ e+ 8 e e« o e
» Quotient ring R/L < Z* mod B R

14 /39

Lattices

15/39

Lattices

15/39

Lattices

15/39

Lattices

15/39

Lattice Basis - Rotation Basis

» Generating element v € R.

16 /39

Lattice Basis - Rotation Basis

» Generating element v € R.

.....

16 /39

Lattice Basis - Rotation Basis

» Generating element v € R.

.....

Important Feature:

» Basis vectors are (almost) orthogonal.

16 /39

Lattice Basis - Rotation Basis

» Generating element v € R.

.....

Important Feature:
» Basis vectors are (almost) orthogonal.

» R mod Bgret(v) contains a large ball around zero.

16 /39

Lattice Basis - Hermite Normal Form

Definition:
» A matrix H € Z%? is in HNF, if it is a non-singular non-negative
lower-triangular matrix such that each row has a unique maximum entry,
which is on the diagonal.

17 /39

Lattice Basis - Hermite Normal Form

Definition:
» A matrix H € Z%? is in HNF, if it is a non-singular non-negative
lower-triangular matrix such that each row has a unique maximum entry,
which is on the diagonal.

» HNF can be computed from any basis.

17 /39

Lattice Basis - Hermite Normal Form

Definition:
» A matrix H € Z%? is in HNF, if it is a non-singular non-negative

lower-triangular matrix such that each row has a unique maximum entry,
which is on the diagonal.

» HNF can be computed from any basis.

» Unique HNF per lattice.

17 /39

Lattice Basis - Hermite Normal Form

Definition:
» A matrix H € Z%? is in HNF, if it is a non-singular non-negative

lower-triangular matrix such that each row has a unique maximum entry,
which is on the diagonal.

» HNF can be computed from any basis.

» Unique HNF per lattice.
= HNF is least revealing basis.

17 /39

Rotation Basis vs Hermite Normal Form

18 /39

Rotation Basis vs Hermite Normal Form

18 /39

Gentry's Encryption Scheme [Gen09; GH11]

» Two ideals / and J in ring R.

19/39

Gentry's Encryption Scheme [Gen09; GH11]

» Two ideals and J in ring R.
» Ideal I = 2R defines the plaintext space R/I.

19/39

Gentry's Encryption Scheme [Gen09; GH11]

» Two ideals / and J in ring R.
» Ideal I = 2R defines the plaintext space R/I.
» ldeal J defines the ciphertext space R/.J.

19/39

Gentry's Encryption Scheme [Gen09; GH11]

v

Two ideals I and J in ring R.

Ideal I = 2R defines the plaintext space R/I.

Ideal J defines the ciphertext space R/.J.

A “powerful” basis is used as secret key (rotation basis).

v

v

v

19/39

Gentry's Encryption Scheme [Gen09; GH11]

v

Two ideals I and J in ring R.
Ideal I = 2R defines the plaintext space R/I.
Ideal J defines the ciphertext space R/.J.

» A “powerful” basis is used as secret key (rotation basis).
A "weak” basis is used as public key (HNF).

v

v

v

19/39

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1%)
» Fix ring R, and basis B; of ideal I = 2R.

20/39

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1%)
» Fix ring R, and basis B; of ideal I = 2R.

> Generate ideal .J co-prime to I and two bases (B3, BY").

20/39

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1%)
» Fix ring R, and basis B; of ideal I = 2R.
> Generate ideal .J co-prime to I and two bases (B3, BY").
» Return pk « (R, By, BY) and sk < (R, By, B").

20/39

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1%)
» Fix ring R, and basis B; of ideal I = 2R.

> Generate ideal .J co-prime to I and two bases (B3, BY").

» Return pk « (R, By, BY) and sk < (R, By, B").

Encrypt(pk, m)
» Sample noise r1 € I with r; & {0, 41}

20/39

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1%)
» Fix ring R, and basis B; of ideal I = 2R.

> Generate ideal .J co-prime to I and two bases (B3, BY").

» Return pk « (R, By, BY) and sk < (R, By, B").

Encrypt(pk, m)

» Sample noise r1 € I with r; & {0, 41}
> Return ¢ < m +7I mod BY¥ =m+2r +bforbe J.

20/39

Gentry's Encryption Scheme [Gen09; GH11]

KeyGen(1%)
» Fix ring R, and basis B; of ideal I = 2R.

> Generate ideal .J co-prime to I and two bases (B3, BY").

» Return pk « (R, By, BY) and sk < (R, By, B").

Encrypt(pk, m)

» Sample noise r1 € I with r; & {0, 41}
> Return ¢ < m +7I mod BY¥ =m+2r +bforbe J.

Decrypt(sk, ¢)

» Return m < (¢ mod B%*) mod Bj.

20/39

Gentry's Encryption Scheme - Homomorphic Operations

» Ring operations reflect operations on plaintext.

21/39

Gentry's Encryption Scheme - Homomorphic Operations

» Ring operations reflect operations on plaintext.
> C :m2+27’1+b1.

> o = Mg + 219 + by.

21/39

Gentry's Encryption Scheme - Homomorphic Operations

» Ring operations reflect operations on plaintext.
> ¢ =ma + 2r1 + by.
> o = Mg + 219 + by.
c1+ ¢y = (my +mg) +2(r1 +1r2) + (b1 + ba).

v

21/39

Gentry's Encryption Scheme - Homomorphic Operations

» Ring operations reflect operations on plaintext.
> ¢ =ma + 2r1 + by.
> o = Mg + 219 + by.
> 1+ o= (m1+mg) +2(r1 +12) + (b1 + ba).

> ¢y Cy=my Mo+ 2(ryma +1ire +1romy) +b- ...

21/39

Gentry's Encryption Scheme - Homomorphic Operations

» Ring operations reflect operations on plaintext.
> ¢ =ma + 2r1 + by.
> o = Mg + 219 + by.
> 1+ o= (m1+mg) +2(r1 +12) + (b1 + ba).

> ¢y Cy=my Mo+ 2(ryma +1ire +1romy) +b- ...

v" Can decrypt as long as noise stays small.

21/39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.

22/39

BGV Encryption Scheme (simplified) [BGV14; Car+18]
KeyGen(1%)

» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.

» Sample s & R,.

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.
» Sample s & R,.

> Sample B & R,.

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.
» Sample s & R,.
> Sample B & R,.

» Sample e Z R,.

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.
» Sample s & R,.

Sample B & R,.

Sample e Zz Rs.

b < Bs + 2e.

v

v

v

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.
» Sample s & R,.
> Sample B & R,.
» Sample e Z R,.
» b < Bs+ 2e.
» Return sk <—s = (1,s), pk < A = (b,—B).

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1%)
» Fix ring R = Z[x]/®(z) as before.
» Pick modulus ¢ and let R, = R/qR.
» Sample s & R,.
> Sample B & R,.
» Sample e Z R,.
» b+ Bs+ 2e.
» Return sk <—s = (1,s), pk < A = (b,—B).
» Note: (A;s) =1-b— B -s=2e.

22 /39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt(pk, m)
» m < (m,0).

23/39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt(pk, m)
» m < (m,0).

74
> 1+ Rs.

23/39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt(pk, m)
» m < (m,0).
& Rs.
> Returnc <~ m+7- A € RZ.

23/39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt(pk, m)
» m < (m,0).
& Rs.
> Returnc <~ m+7- A € RZ.

Decrypt(sk, c)

» Return m « (c,s) mod 2.

23/39

BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt(pk, m)
» m < (m,0).
& Rs.
> Returnc <~ m+7- A € RZ.

Decrypt(sk, c)
» Return m « (c,s) mod 2.
» Note: (c,s) =m +r(Bs+2e) —rBs=m+ 2re.

23 /39

BGV Encryption Scheme - Homomorphic Operations

» Adding two ciphertexts adds their plaintext:

(c1,8) + (c9,8) = (c1 + ¢cq,8)

24 /39

BGV Encryption Scheme - Homomorphic Operations

» Adding two ciphertexts adds their plaintext:
(c1,8) + (c9,8) = (c1 + ¢cq,8)
» Multiplication is more difficult:

<C1,S> ' <C27S> = Ci(S S5 S)C2 = <C1 DCo, 8D S>

24 /39

BGV Encryption Scheme - Homomorphic Operations

» Adding two ciphertexts adds their plaintext:
(c1,8) + (c9,8) = (c1 + ¢cq,8)
» Multiplication is more difficult:
(c1,8) - (ca,8) =cl(sDs)cy = (c; Dy, sDs)

» "Key switching” (Out of scope)

24 /39

Ciphertext Switching

25/39

Switching Ciphertexts [Car+18]

» FHE computation: BGV scheme.

26 /39

Switching Ciphertexts [Car+18]

» FHE computation: BGV scheme.
» ZK proof: Gentry's scheme.

26 /39

Switching Ciphertexts [Car+18]

» FHE computation: BGV scheme.
» ZK proof: Gentry's scheme.

Goal:
» Switch ciphertext via bootstrapping-like approach:

26 /39

Switching Ciphertexts [Car+18]

» FHE computation: BGV scheme.
» ZK proof: Gentry's scheme.

Goal:

» Switch ciphertext via bootstrapping-like approach:
» Encrypt BGV secret key under Gentry.

26 /39

Switching Ciphertexts [Car+18]

» FHE computation: BGV scheme.
» ZK proof: Gentry's scheme.

Goal:

» Switch ciphertext via bootstrapping-like approach:

» Encrypt BGV secret key under Gentry.
» Decrypt homomorphically.

26 /39

Match Ciphertext Spaces

» Ciphertext Spaces:

27/39

Match Ciphertext Spaces

» Ciphertext Spaces:
> BGV: R,

27 /39

Match Ciphertext Spaces

» Ciphertext Spaces:
> BGV: R,
» Gentry: R mod ng.

27 /39

Match Ciphertext Spaces

» Ciphertext Spaces:
» BGV: R2,
» Gentry: R mod ng.
» Require qR C J, i.e. ¢ = ng -t with t € Z.

27 /39

Match Ciphertext Spaces

» Ciphertext Spaces:
» BGV: Rg.
» Gentry: R mod ng.
» Require qR C J, i.e. ¢ = Bf-k -t with t € Z.
» For z € R we have: (z mod ¢) mod B”" =z mod B"".

27 /39

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
> BGV secret key s = (1,5) € R?.

28/39

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
> BGV secret key s = (1,5) € R?.
> s € Ry = R/I

28/39

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
> BGV secret key s = (1,5) € R?.
» s€ Ry=R/I.
> Encrypt secret key {s}c = s+ 2r +bc (R mod B").

28 /39

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
> BGV secret key s = (1,5) € R?.
» s€ Ry=R/I.
> Encrypt secret key {s}c = s+ 2r +bc (R mod B").

Publicly Available:
» Encrypted BGV secret key {s}c.

28 /39

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
> BGV secret key s = (1,5) € R?.
» s€ Ry=R/I.
> Encrypt secret key {s}c = s+ 2r +bc (R mod B").

Publicly Available:
» Encrypted BGV secret key {s}c.
» BGV ciphertext {m}gey = ¢ = (co, 1) € R; with (c,s) = m + 2e.

28 /39

Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
> BGV secret key s = (1,5) € R?.
» s€ Ry=R/I.
> Encrypt secret key {s}c = s+ 2r +bc (R mod B").

Publicly Available:
» Encrypted BGV secret key {s}c.

» BGV ciphertext {m}gey = ¢ = (co, 1) € R; with (c,s) = m + 2e.

» Decrypt BGV ciphertext with encrypted private key!

28 /39

Homomorphically Decrypt BGV Ciphertext

> {m}gev = (co, c1).

» {s}c =s5+2r+0b.

> co+c1-s=m+2e mod q.
» geJ.

({m}sev, {s}c) mod BY*

29 /39

Homomorphically Decrypt BGV Ciphertext

> {m}gev = (co, c1).

» {s}c =s5+2r+0b.

> co+c1-s=m+2e mod q.
» geJ.

({m}sev, {s}c) mod BY*
=co+c-{s}e

29 /39

Homomorphically Decrypt BGV Ciphertext

> {m}gev = (co, c1).

» {s}c=s+2r+0.

> co+c1-s=m+2e mod q.
» geJ.

({m}eov, {s}s) mod B
=co+c-{s}c
=co+c-(s+2r+0b)

29 /39

Homomorphically Decrypt BGV Ciphertext

> {m}BGv = (00,61)-

({m}scv, {s}c) mod B} > {s}e=s+2r+b.

=co+c1-{s}c
:Co+01'(8+27“+b)

» geJ.
=cyt+c-s+c-(2r+0b)

» co+c1-s=m+2e mod q.

29 /39

Homomorphically Decrypt BGV Ciphertext

> {m}gev = (co, c1).

» {s}c=s+2r+0.

» co+c1-s=m+2e mod q.
» geJ.

({m}sev,{s}c) mod BY*
=co+c-{s}c
=co+c-(s+2r+0b)
=cyt+c-s+c-(2r+0b)
=m+ 2e+ kq+ 2cir + c1b

29 /39

Homomorphically Decrypt BGV Ciphertext

> {m}BGV: (00,61)-

» {stc=s+2r+b.

» co+c1-s=m+2e mod q.
» geJ.

({m}sev,{s}c) mod BY*
=co+c1-{s}c
=co+c-(s+2r+0b)
=cyt+c-s+c-(2r+0b)
=m+ 2e+ kq+ 2cir + c1b
=m+ 2(e + 017°Z+ Skq + clbl

v~

Noise Lattice point €J

29 /39

Homomorphically Decrypt BGV Ciphertext

> {m}BGV: (00,61)-

» {s}c=s+2r+0.

» co+c1-s=m+ 2e mod q.
» geJ.

({m}sev, {s}s) mod B}
=co+c1-{s}c
=co+c-(s+2r+0b)
=cyt+c-s+c-(2r+0b)
=m+ 2e+ kq+ 2cir + c1b
=m+ 2(e + 017’Z+ Sk’q + clbl

v~

Noise Lattice point €J

v" Valid ciphertext if m + 2(e + ¢17) is small enough.

29 /39

Zero-Knowledge Proof of Decryption

30/39

Sigma Protocol

Prover P Verifier V'
» Prover P and Verifier V.

31/39

Sigma Protocol

Prover P Verifier V'
» Prover P and Verifier V.

) Commitment [
» P sends commitment .

31/39

Sigma Protocol

Prover P Verifier V'
» Prover P and Verifier V.

) Commitment [
» P sends commitment .

» 1 sends challenge e. Challenge ¢

31/39

Sigma Protocol

Prover P Verifier V'
Prover P and Verifier V.

P sends commitment .

v

Commitment [

v

v

V' sends challenge e. Challenge ¢

v

P sends response 7.
Response r

31/39

Sigma Protocol

Prover P Verifier V'
Prover P and Verifier V.

P sends commitment .

v

Commitment [

v

v

V' sends challenge e. Challenge ¢

v

P sends response 7.

o R n
V verifies. esponse 7

v

31/39

(Wanted) Properties

Correctness:
» Can a true statement be proven?

32/39

(Wanted) Properties

Correctness:
» Can a true statement be proven?

Special Soundness:
» Given two transcripts (I, eq,r0) and (I, eq,71).

» Can we compute the secret?

32/39

(Wanted) Properties

Correctness:
» Can a true statement be proven?

Special Soundness:
» Given two transcripts (I, eq,r0) and (I, eq,71).

» Can we compute the secret?

Special Honest Verifier Zero-Knowledge:
» Given challenge e.

» Can transcripts be generated without knowledge of secret?

32/39

The ZK Protocol [Car+18]

Statement: A given ciphertext ¢ = m + 2r + b is an encryption of 0.

33/39

The ZK Protocol [Car+18]

Statement: A given ciphertext ¢ = m + 2r + b is an encryption of 0.

P Choose encryption ¢ = 2r' + ' of 0. Send ¢ to the verifier.

33/39

The ZK Protocol [Car+18]

Statement: A given ciphertext ¢ = m + 2r + b is an encryption of 0.

P Choose encryption ¢ = 2r' + ' of 0. Send ¢ to the verifier.

V Choose challenge e & {0,1} uniformly at random. Send e to the prover.

33/39

The ZK Protocol [Car+18]

Statement: A given ciphertext ¢ = m + 2r + b is an encryption of 0.

P Choose encryption ¢ = 2r' + ' of 0. Send ¢ to the verifier.

V Choose challenge e & {0,1} uniformly at random. Send e to the prover.

P Compute response d <— e - b+ '. Send d to the verifier.

33/39

The ZK Protocol [Car+18]

Statement: A given ciphertext ¢ = m + 2r + b is an encryption of 0.

P Choose encryption ¢ = 2r' + b of 0. Send ¢ to the verifier.
V' Choose challenge ¢ bl {0,1} uniformly at random. Send e to the prover.
P Compute response d <— e - b+ '. Send d to the verifier.

V' Verify that d is a valid lattice point, and check that e- ¢+ ¢ — d is well
formed and sufficiently small.

33/39

The ZK Protocol [Car+18]

Statement: A given ciphertext ¢ = m + 2r + b is an encryption of 0.

P Choose encryption ¢ = 2r' + ' of 0. Send ¢ to the verifier.

V' Choose challenge ¢ bl {0,1} uniformly at random. Send e to the prover.
P Compute response d <— e - b+ '. Send d to the verifier.

V' Verify that d is a valid lattice point, and check that e- ¢+ ¢ — d is well
formed and sufficiently small.

Transcript: (c, e, d).

33/39

Correctness

If the statement is correct, then V verifies:

34 /39

Correctness

If the statement is correct, then V verifies:

V' d € J is a valid lattice point. By definition, b and b are lattice points.

34 /39

Correctness

If the statement is correct, then V verifies:

V' d € J is a valid lattice point. By definition, b and b are lattice points.

v e-c+d —dis well formed and sufficiently small. This is 2(e - 7 +7’), which
is the noise vector of e - ¢+ (.

34 /39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (¢, eq, dy) and (¢, eq,d;).

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (¢, eq, dy) and (¢, eq,d;).

(e1—eo) " - (dy — do)

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (¢, eq, dy) and (¢, eq,d;).

(ex —eo) ' - (di — do)
=(e1 —eg) - (erb+ b —egb— V)

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (¢, eq, dy) and (¢, eq,d;).

(ex —eo) ' - (di — do)
=(e1 —eg) - (erb+ b —egb— V)

= (61 — 60)71 . (61 — 60) -b

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (¢, eq, dy) and (¢, eq,d;).

(e1 —eg) ™"+ (di — do)
=(e1 —eg) - (erb+ b —egb— V)
= (61 — 60)71 . (61 — 60) -b
=b

35/39

Special Soundness

» If we know b € J from ¢ = m + 2r + b, we can get m.

= b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (¢, eq, dy) and (¢, eq,d;).

(er — o)™t - (dy — do)
=(e1 —eg) - (erb+ b —egb— V)
= (61 — 60)71 : (61 — 60) -b
=b

v" Witness b can be computed.

35/39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):

» Sample* random noise vector 7.

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):
» Sample* random noise vector 7.

» Compute lattice point d € J corresponding to 27. l.e. ¢ =27 + d.

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):
» Sample* random noise vector 7.
» Compute lattice point d € J corresponding to 27. l.e. ¢ =27 + d.

> c—e-c.

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):
» Sample* random noise vector 7.
» Compute lattice point d € J corresponding to 27. l.e. ¢ =27 + d.
» +—c—e-c

» Output transcript (¢, e, d).

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):
» Sample* random noise vector 7.
» Compute lattice point d € J corresponding to 27. l.e. ¢ =27 + d.
» +—c—e-c

» Output transcript (¢, e, d).

v Transcript is valid. In particular e - ¢ + ¢ — d = 27 is well-formed noise.

36 /39

Special Honest-Verifier Zero-Knowledge

» Honest verifier should not learn anything from an execution of the protocol.

» l.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):
» Sample* random noise vector 7.
» Compute lattice point d € J corresponding to 27. l.e. ¢ =27 + d.
» +—c—e-c

» Output transcript (¢, e, d).

v Transcript is valid. In particular e - ¢ + ¢ — d = 27 is well-formed noise.

v Honest verifier does not learn anything about b.

36 /39

Remarks on Fully Homomorphic Encryption Schemes

» Single bit plaintexts with current construction.
» Parameters can be chosen to support larger plaintext spaces.

37/39

Remarks on Fully Homomorphic Encryption Schemes

» Single bit plaintexts with current construction.
» Parameters can be chosen to support larger plaintext spaces.

» Bootstrapping during FHE computation: Encryption uses randomness.
» Everyone should be able to retrace computation on ciphertexts.

37/39

Remarks on Fully Homomorphic Encryption Schemes

» Single bit plaintexts with current construction.
» Parameters can be chosen to support larger plaintext spaces.
» Bootstrapping during FHE computation: Encryption uses randomness.
» Everyone should be able to retrace computation on ciphertexts.
» Integrity during ciphertext switching?
» Ensure that encrypted secret key during key switching is later used in ZK
proof.

37/39

Remarks on Fully Homomorphic Encryption Schemes

» Single bit plaintexts with current construction.
» Parameters can be chosen to support larger plaintext spaces.
» Bootstrapping during FHE computation: Encryption uses randomness.
» Everyone should be able to retrace computation on ciphertexts.
» Integrity during ciphertext switching?
» Ensure that encrypted secret key during key switching is later used in ZK

proof.
» Addressed in [Car+18]: verify integrity of single message.

37/39

Remarks on Fully Homomorphic Encryption Schemes

» Single bit plaintexts with current construction.
» Parameters can be chosen to support larger plaintext spaces.
» Bootstrapping during FHE computation: Encryption uses randomness.
» Everyone should be able to retrace computation on ciphertexts.
» Integrity during ciphertext switching?
» Ensure that encrypted secret key during key switching is later used in ZK
proof.

» Addressed in [Car+18]: verify integrity of single message.
» Doubt that this is enough!

37/39

Remarks on Zero-Knowledge Proof of Decryption

» Challenge e € {0, 1} too simple.

38/39

Remarks on Zero-Knowledge Proof of Decryption

» Challenge e € {0, 1} too simple.

» With larger e, e - ¢ + ¢ might be undecryptable
— choose parameters wisely.

38/39

Remarks on Zero-Knowledge Proof of Decryption

» Challenge e € {0, 1} too simple.

» With larger e, e - ¢ + ¢ might be undecryptable
— choose parameters wisely.
» Maybe use e € Ry?

38/39

Remarks on Zero-Knowledge Proof of Decryption

» Challenge e € {0, 1} too simple.

» With larger e, e - ¢ + ¢ might be undecryptable
— choose parameters wisely.
» Maybe use e € Ry?

» Do we really need a ZK protocol in the end?

38/39

Remarks on Zero-Knowledge Proof of Decryption

» Challenge e € {0, 1} too simple.

» With larger e, e - ¢ + ¢ might be undecryptable
— choose parameters wisely.
» Maybe use e € Ry?

» Do we really need a ZK protocol in the end?
» Only want to protect secret inputs + secret key.

38/39

Remarks on Zero-Knowledge Proof of Decryption

» Challenge e € {0, 1} too simple.

» With larger e, e - ¢ + ¢ might be undecryptable
— choose parameters wisely.
» Maybe use e € Ry?

» Do we really need a ZK protocol in the end?

» Only want to protect secret inputs + secret key.
» Isn’t it enough to simply publish b's from ¢ = m + 2r + b7

38/39

Zero-Knowledge Proof of Decryption
for FHE Ciphertexts

Thank you for your attention!

Questions?

39/39

References |

[BGV14]

[Car+18]
[Gen09]

[GH11]

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homomorphic
encryption without bootstrapping”. In: ACM Transactions on Computation Theory (TOCT) 6.3
(2014), p. 13.

Christopher Carr et al. Zero-Knowledge Proof of Decryption for FHE Ciphertexts. Tech. rep.
Cryptology ePrint Archive, Report 2018/026, 2018. https://eprint.iacr.org/2018,/026, 2018.

Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing. ACM. 2009, pp. 169-178.

Craig Gentry and Shai Halevi. “Implementing gentry's fully-homomorphic encryption scheme”.
In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2011, pp. 129-148.

40/39

	Fully Homomorphic Encryption
	Ciphertext Switching
	Zero-Knowledge Proof of Decryption

