Zero-Knowledge Proof of Decryption for FHE Ciphertexts

Tom Kneiphof

June 28, 2018

 ${}^{\bullet} \square {}^{\bullet}$

1/39

- Multiple users with secret input.
- Compute some function on inputs.
- ▶ Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

- Multiple users with secret input.
- Compute some function on inputs.
- ▶ Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

- Multiple users with secret input.
- Compute some function on inputs.
- Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

- Multiple users with secret input.
- Compute some function on inputs.
- Everyone should be convinced that the output is indeed correct.
- Inputs must not be revealed!

• Interactive protocol amongst n parties.

▶ Perform computation cooperatively (By some protocol).

- Everybody must be online.
- ► Asynchronous setting.
- ► Large group setting.

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

- Everybody must be online.
- Asynchronous setting.
- ► Large group setting.

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

- Everybody must be online.
- Asynchronous setting.
- ► Large group setting.

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

- Everybody must be online.
- Asynchronous setting.
- ► Large group setting.

- Interactive protocol amongst n parties.
- Perform computation cooperatively (By some protocol).

- Everybody must be online.
- Asynchronous setting.
- ► Large group setting.

Authority is trusted to know the secret inputs.

- ▶ Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- ▶ Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

- Authority is trusted to know the secret inputs.
- Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- ▶ Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

- Authority is trusted to know the secret inputs.
- Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- ▶ Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

- Authority is trusted to know the secret inputs.
- Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

- Authority is trusted to know the secret inputs.
- Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- ► Authority *proves* correctness of output.
- Secrets must not be revealed!

- Authority is trusted to know the secret inputs.
- Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

- Authority is trusted to know the secret inputs.
- Authority is *not* trusted to perform correct computations.
- Use fully homomorphic encryption to perform computation on encrypted inputs.
- Get ciphertext of the output.
- Authority decrypts and announces output.
- Authority proves correctness of output.
- Secrets must not be revealed!

▲ □ ▶
 5 / 39

▲ □ ▶
 5 / 39

< □

 5 / 39

Fully Homomorphic Encryption

- Think of hardware circuits.
- ► Consist of gates (AND, OR, NAND, ...).
 - Here: Set of gates $\Gamma := \{\cdot, +\}$.
- Only consider functions that can be expressed as circuit of gates in Γ .

- Think of hardware circuits.
- ► Consist of gates (AND, OR, NAND, ...).
 - Here: Set of gates $\Gamma := \{\cdot, +\}$.
- Only consider functions that can be expressed as circuit of gates in Γ .

- Think of hardware circuits.
- ► Consist of gates (AND, OR, NAND, ...).
 - Here: Set of gates $\Gamma := \{\cdot, +\}$.
- Only consider functions that can be expressed as circuit of gates in Γ .

- Think of hardware circuits.
- ► Consist of gates (AND, OR, NAND, ...).
 - Here: Set of gates $\Gamma := \{\cdot, +\}$.
- Only consider functions that can be expressed as circuit of gates in Γ .

- $\blacktriangleright \operatorname{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$

Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- ► Evaluate_{*E*}(*pk*, *C*, ψ_1 , ... ψ_t) → ψ' , *C* ∈ *C*_{*E*}.

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

- $\operatorname{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$

Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- ► Evaluate_{*E*}(*pk*, *C*, ψ_1 , ... ψ_t) → ψ' , *C* ∈ *C*_{*E*}.

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

- ▶ $\mathsf{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$
- Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- ► Evaluate_{*E*}(*pk*, *C*, ψ_1 , ... ψ_t) → ψ' , *C* ∈ *C*_{*E*}.

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

- ▶ $\mathsf{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$

Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- ► Evaluate_{$\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \to \psi'$, $C \in \mathcal{C}_{\mathcal{E}}$.</sub>

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

- ▶ $\mathsf{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$

Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- ► Evaluate_{*E*}(*pk*, *C*, ψ_1 , ... ψ_t) → ψ' , *C* ∈ *C*_{*E*}.

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

- ▶ $\mathsf{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$

Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- Evaluate_{\mathcal{E}} $(pk, C, \psi_1, \dots, \psi_t) \to \psi'$, $C \in \mathcal{C}_{\mathcal{E}}$.

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

- $\blacktriangleright \ \operatorname{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$
- Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- Evaluate_{\mathcal{E}} $(pk, C, \psi_1, \dots, \psi_t) \to \psi'$, $C \in \mathcal{C}_{\mathcal{E}}$.

For $C \in C_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \le i \le t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

• Ciphertext size and computation times in $poly(\kappa)$.

- $\blacktriangleright \ \operatorname{KeyGen}_{\mathcal{E}}(1^{\kappa}) \to (sk, pk).$
- Encrypt_{\mathcal{E}} $(pk, \pi) \to \psi$.
- $\mathsf{Decrypt}_{\mathcal{E}}(sk,\psi) \to \pi.$
- Correctness:

- Set of permitted circuits $C_{\mathcal{E}}$.
- Evaluate_{\mathcal{E}} $(pk, C, \psi_1, \dots, \psi_t) \to \psi'$, $C \in \mathcal{C}_{\mathcal{E}}$.

For $C \in \mathcal{C}_{\mathcal{E}}$, plaintexts π_i and their encryption $\psi_i \leftarrow \mathsf{Encrypt}_{\mathcal{E}}(pk, \pi_i)$, $1 \leq i \leq t$:

 $\psi' \leftarrow \mathsf{Evaluate}_{\mathcal{E}}(pk, C, \psi_1, \dots, \psi_t) \Rightarrow \mathsf{Decrypt}_{\mathcal{E}}(sk, \psi') = C(\pi_1, \dots, \pi_t).$

• Ciphertext size and computation times in $poly(\kappa)$.

8/39

Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

- \blacktriangleright $\mathcal{C}_{\mathcal{E}}$ contains all circuits of a user chosen circuit depth.
- Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:

• $C_{\mathcal{E}}$ contains *all* circuits.

Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

- $C_{\mathcal{E}}$ contains all circuits of a user chosen circuit depth.
- Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:

• $C_{\mathcal{E}}$ contains *all* circuits.
Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:

- $C_{\mathcal{E}}$ contains all circuits of a user chosen circuit depth.
- Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:

• $C_{\mathcal{E}}$ contains *all* circuits.

► The following encryption schemes contain "noise".

- Can decrypt \Leftrightarrow Noise small.
- \blacktriangleright Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under *new* key.
- Evaluate decryption circuit homomorphically.

- ► The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- \blacktriangleright Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under *new* key.
- Evaluate decryption circuit homomorphically.

- ► The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- \blacktriangleright Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under *new* key.
- Evaluate decryption circuit homomorphically.

- ► The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- \blacktriangleright Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under *new* key.
- Evaluate decryption circuit homomorphically.

- ► The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- \blacktriangleright Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under *new* key.
- Evaluate decryption circuit homomorphically.

- ► The following encryption schemes contain "noise".
- Can decrypt \Leftrightarrow Noise small.
- \blacktriangleright Homomorphic operations \rightarrow Noise grows \rightarrow Can't decrypt.
- "Refresh" ciphertext after homomorphic operations.

Basic Idea:

- Encrypt ciphertext under *new* key.
- Evaluate decryption circuit homomorphically.

 $\checkmark\,$ Create (leveled) FHE scheme from SHE scheme.

- SHE scheme *E* is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- ▶ Bootstrapping: Encrypt ciphertext under *same* key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping.
- ► Get FHE scheme from single SHE secret key.

- SHE scheme *E* is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- ► Bootstrapping: Encrypt ciphertext under *same* key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping.
- ▶ Get FHE scheme from single SHE secret key.

- SHE scheme *E* is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- ► Bootstrapping: Encrypt ciphertext under *same* key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping.
- ▶ Get FHE scheme from single SHE secret key.

- SHE scheme *E* is circular secure, iff it is IND-CPA given encryptions of it secret key bits.
- ► Bootstrapping: Encrypt ciphertext under *same* key.
- Don't have to chain secret keys to get leveled FHE from bootstrapping.
- Get FHE scheme from single SHE secret key.

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $\blacktriangleright x^d \equiv -1 \mod \Phi(x).$
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ▶ Multiplication looks similar to complex numbers (for *d* = 2)...

٠		0	0	•	۰	•	0	0
	0	0	0	0		•	0	0
0	0	0	0	0	•	0	0	0
0	•	•	0	•	•	•	0	0
0	•	0	0		•	0		0
0	•	0	0			0		0
•	•	•	0	•	•	•		0
•	0	0	0	0	•	•	0	0
	0	0	0	0	•	0	0	0
	0	0	0	0		0	0	0
		0	0		•	•	0	

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $\blacktriangleright x^d \equiv -1 \mod \Phi(x).$
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ▶ Multiplication looks similar to complex numbers (for *d* = 2)...

•	0	0	0		0	0	0	
•	0	0	0	0		0	0	0
•	0	0	0	0	•	0	0	0
•	0	0	0	0		0	0	0
•	•		0		•	0		0
٠	0	0	0		>•	0	0	0
•	0	0	0	•	•	0	0	0
•	•	•	0	0	•	0	•	0
•	•	0	0	0	•	0	0	0
	•	0	0	0	•	0	0	0
•		0	0		•		0	

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $\blacktriangleright x^d \equiv -1 \mod \Phi(x).$
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ▶ Multiplication looks similar to complex numbers (for *d* = 2)...

0	0	0	0	0	•	•	0	0
0	•	0	0	•	•	•	•	0
•	•	0	0	•	•	•	•	0
0	0	0	0	•	•	•	•	0
0	0	0	0 7	ł	•	•	•	0
0	•	0	0	$\begin{pmatrix} \\ 0 \\ 1 \end{pmatrix}$	•	•	0	0
0	•	•	•	•	•	•	•	0
•	0	0	0	•	•	•	•	0
•	0	0	0	•	•	•	0	0
•	0	0	0	•	•	•	•	0
•	•	0	0	•	•	•	•	0

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ▶ Multiplication looks similar to complex numbers (for *d* = 2)...

0	0	0	0	0	•	•	0	0
0	•	0	0	•	•	•	•	0
•	•	0	0	•	•	•	•	0
0	0	0	0	•	•	•	•	0
0	0	0	• 	ł	•	•	•	0
0	•	0	0	01	•	•	0	0
0	•	•	•	•	•	•	•	0
•	0	0	0	•	•	•	•	0
•	0	0	0	•	•	•	0	0
•	0	0	•	•	•	•	•	0
•	•	0	0	•	•	•	•	0

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\blacktriangleright \ \Phi(x) = x^d + 1 \text{ with } d = 2^{\delta}.$
- \blacktriangleright Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\blacktriangleright \ \Phi(x) = x^d + 1 \text{ with } d = 2^{\delta}.$
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\blacktriangleright \ \Phi(x) = x^d + 1 \text{ with } d = 2^{\delta}.$
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ► Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\blacktriangleright \ \Phi(x) = x^d + 1 \text{ with } d = 2^{\delta}.$
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\blacktriangleright \ \Phi(x) = x^d + 1 \text{ with } d = 2^{\delta}.$
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\blacktriangleright \ \Phi(x) = x^d + 1 \text{ with } d = 2^{\delta}.$
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ► Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ► Multiplication looks similar to complex numbers (for d = 2)...

- Common ring $R = \mathbb{Z}[x]/\Phi(x)$.
- $\Phi(x) = x^d + 1$ with $d = 2^{\delta}$.
- Ring of polynomials with degree at most d-1.
- $x^d \equiv -1 \mod \Phi(x)$.
- For $a \in \mathbb{Z}[x]/\Phi(x)$: coefficient vector $\mathbf{a} \in \mathbb{Z}^d$.
- Polynomial addition = vector addition.
- ► Multiplication looks similar to complex numbers (for d = 2)...

- $I \subset R$ is called *ideal* iff for all $a, b \in I$, $r \in R$:
 - ▶ $0 \in I$.
 - ▶ $a + b \in I$.
 - $\blacktriangleright r \cdot a \in I.$

- $I \subset R$ is called *ideal* iff for all $a, b \in I$, $r \in R$:
 - ▶ $0 \in I$.
 - ▶ $a + b \in I$.
 - $\blacktriangleright r \cdot a \in I.$

- $I \subset R$ is called *ideal* iff for all $a, b \in I$, $r \in R$:
 - ▶ $0 \in I$.
 - ▶ $a + b \in I$.
 - $\blacktriangleright r \cdot a \in I.$

- $I \subset R$ is called *ideal* iff for all $a, b \in I$, $r \in R$:
 - ▶ $0 \in I$.
 - ▶ $a + b \in I$.
 - $\blacktriangleright \ r \cdot a \in I.$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- ▶ Ideal lattice: Ring elements corresponding to elements in *L* form ideal.
- Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.

• Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.

• Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

- Consider vector space \mathbb{R}^d and some basis $\mathcal{B} \in \mathbb{Z}^{d \times d}$.
- ► Lattice L = L(B) is integer linear combination of columns in B.
- Infinite number of lattice bases for $d \ge 2$.
- Ideal lattice: Ring elements corresponding to elements in L form ideal.
- Quotient ring $R/L \Leftrightarrow \mathbb{Z}^d \mod \mathcal{B}$

Lattices

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Lattices

Lattices

Lattices

• Generating element $v \in R$.

$$\flat \ \mathcal{B}_{\mathsf{Rot}}(v) = \{ b_i \in R \mid b_i = v \cdot x^i \}_{i \in \{0, \dots, d-1\}}.$$

- Basis vectors are (almost) orthogonal.
- ▶ $R \mod \mathcal{B}_{\mathsf{Rot}}(v)$ contains a large ball around zero.

- Generating element $v \in R$.
- $\mathcal{B}_{\mathsf{Rot}}(v) = \{ b_i \in R \mid b_i = v \cdot x^i \}_{i \in \{0, \dots, d-1\}}.$

- Basis vectors are (almost) orthogonal.
- ▶ $R \mod \mathcal{B}_{\mathsf{Rot}}(v)$ contains a large ball around zero.

- Generating element $v \in R$.
- $\mathcal{B}_{\mathsf{Rot}}(v) = \{b_i \in R \mid b_i = v \cdot x^i\}_{i \in \{0, \dots, d-1\}}.$

- Basis vectors are (almost) orthogonal.
- ▶ $R \mod \mathcal{B}_{\mathsf{Rot}}(v)$ contains a large ball around zero.

- Generating element $v \in R$.
- $\mathcal{B}_{\mathsf{Rot}}(v) = \{b_i \in R \mid b_i = v \cdot x^i\}_{i \in \{0, \dots, d-1\}}.$

- Basis vectors are (almost) orthogonal.
- $R \mod \mathcal{B}_{\mathsf{Rot}}(v)$ contains a large ball around zero.

- A matrix H ∈ Z^{d×d} is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- ▶ HNF can be computed from any basis.
- ► Unique HNF per lattice.
- \Rightarrow HNF is least revealing basis.

- A matrix H ∈ Z^{d×d} is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- ▶ HNF can be computed from any basis.
- ► Unique HNF per lattice.
- \Rightarrow HNF is least revealing basis.

- A matrix H ∈ Z^{d×d} is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- ▶ HNF can be computed from any basis.
- ► Unique HNF per lattice.
- \Rightarrow HNF is least revealing basis.

- A matrix H ∈ Z^{d×d} is in HNF, if it is a non-singular non-negative lower-triangular matrix such that each row has a unique maximum entry, which is on the diagonal.
- ▶ HNF can be computed from any basis.
- ► Unique HNF per lattice.
- \Rightarrow HNF is least revealing basis.

Rotation Basis vs Hermite Normal Form

Rotation Basis vs Hermite Normal Form

- Two ideals I and J in ring R.
- Ideal I = 2R defines the plaintext space R/I.
- Ideal J defines the ciphertext space R/J.
- ▶ A "powerful" basis is used as secret key (rotation basis).
- ► A "weak" basis is used as public key (HNF).

- Two ideals I and J in ring R.
- Ideal I = 2R defines the plaintext space R/I.
- Ideal J defines the ciphertext space R/J.
- ▶ A "powerful" basis is used as secret key (rotation basis).
- ► A "weak" basis is used as public key (HNF).

- Two ideals I and J in ring R.
- Ideal I = 2R defines the plaintext space R/I.
- Ideal J defines the ciphertext space R/J.
- ▶ A "powerful" basis is used as secret key (rotation basis).
- ► A "weak" basis is used as public key (HNF).

- Two ideals I and J in ring R.
- Ideal I = 2R defines the plaintext space R/I.
- Ideal J defines the ciphertext space R/J.
- ► A "powerful" basis is used as secret key (rotation basis).
- ► A "weak" basis is used as public key (HNF).

- Two ideals I and J in ring R.
- Ideal I = 2R defines the plaintext space R/I.
- Ideal J defines the ciphertext space R/J.
- ► A "powerful" basis is used as secret key (rotation basis).
- A "weak" basis is used as public key (HNF).

 $\mathsf{KeyGen}(1^{\kappa})$

- Fix ring R, and basis B_I of ideal I = 2R.
- Generate ideal J co-prime to I and two bases (B_J^{sk}, B_J^{pk}) .
- Return $pk \leftarrow (R, B_I, B_J^{pk})$ and $sk \leftarrow (R, B_I, B_J^{sk})$.

$\mathsf{Encrypt}(pk, m)$

- Sample noise $rI \in I$ with $r_i \stackrel{\text{\tiny{def}}}{\leftarrow} \{0, \pm 1\}.$
- ▶ Return $c \leftarrow m + rI \mod B_J^{pk} = m + 2r + b$ for $b \in J$.

$\mathsf{Decrypt}(sk, c)$

 $\mathsf{KeyGen}(1^{\kappa})$

- Fix ring R, and basis B_I of ideal I = 2R.
- Generate ideal J co-prime to I and two bases (B_J^{sk}, B_J^{pk}) .
- Return $pk \leftarrow (R, B_I, B_J^{pk})$ and $sk \leftarrow (R, B_I, B_J^{sk})$.

$\mathsf{Encrypt}(pk, m)$

- Sample noise $rI \in I$ with $r_i \stackrel{\text{\tiny{def}}}{\leftarrow} \{0, \pm 1\}.$
- ▶ Return $c \leftarrow m + rI \mod B_J^{pk} = m + 2r + b$ for $b \in J$.

$\mathsf{Decrypt}(sk, c)$

 $\mathsf{KeyGen}(1^{\kappa})$

- Fix ring R, and basis B_I of ideal I = 2R.
- Generate ideal J co-prime to I and two bases (B_J^{sk}, B_J^{pk}) .
- Return $pk \leftarrow (R, B_I, B_J^{pk})$ and $sk \leftarrow (R, B_I, B_J^{sk})$.

$\mathsf{Encrypt}(pk, m)$

- Sample noise $rI \in I$ with $r_i \stackrel{\text{\tiny{def}}}{\leftarrow} \{0, \pm 1\}.$
- ▶ Return $c \leftarrow m + rI \mod B_J^{pk} = m + 2r + b$ for $b \in J$.

$\mathsf{Decrypt}(sk, c)$

 $\mathsf{KeyGen}(1^{\kappa})$

- Fix ring R, and basis B_I of ideal I = 2R.
- Generate ideal J co-prime to I and two bases (B_J^{sk}, B_J^{pk}) .
- Return $pk \leftarrow (R, B_I, B_J^{pk})$ and $sk \leftarrow (R, B_I, B_J^{sk})$.

$\mathsf{Encrypt}(pk, m)$

- Sample noise $rI \in I$ with $r_i \stackrel{\text{\tiny{def}}}{\leftarrow} \{0, \pm 1\}$.
- ▶ Return $c \leftarrow m + rI \mod B_J^{pk} = m + 2r + b$ for $b \in J$.

 $\mathsf{Decrypt}(sk, c)$

 $\mathsf{KeyGen}(1^{\kappa})$

- Fix ring R, and basis B_I of ideal I = 2R.
- Generate ideal J co-prime to I and two bases (B_J^{sk}, B_J^{pk}) .
- Return $pk \leftarrow (R, B_I, B_J^{pk})$ and $sk \leftarrow (R, B_I, B_J^{sk})$.

$\mathsf{Encrypt}(pk, m)$

- Sample noise $rI \in I$ with $r_i \stackrel{\text{\tiny{def}}}{\leftarrow} \{0, \pm 1\}$.
- Return $c \leftarrow m + rI \mod B_J^{pk} = m + 2r + b$ for $b \in J$.

$\mathsf{Decrypt}(sk, c)$

 $\mathsf{KeyGen}(1^{\kappa})$

- Fix ring R, and basis B_I of ideal I = 2R.
- Generate ideal J co-prime to I and two bases (B_J^{sk}, B_J^{pk}) .
- Return $pk \leftarrow (R, B_I, B_J^{pk})$ and $sk \leftarrow (R, B_I, B_J^{sk})$.

$\mathsf{Encrypt}(pk, m)$

- Sample noise $rI \in I$ with $r_i \stackrel{\text{\tiny{def}}}{\leftarrow} \{0, \pm 1\}$.
- Return $c \leftarrow m + rI \mod B_J^{pk} = m + 2r + b$ for $b \in J$.

 $\mathsf{Decrypt}(sk, c)$

Ring operations reflect operations on plaintext.

- ▶ $c_1 = m_2 + 2r_1 + b_1$.
- ▶ $c_2 = m_2 + 2r_2 + b_2$.
- ► $c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + (b_1 + b_2).$
- $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(r_1m_2 + r_1r_2 + r_2m_1) + b \cdot \dots$

- Ring operations reflect operations on plaintext.
- ▶ $c_1 = m_2 + 2r_1 + b_1$.
- ► $c_2 = m_2 + 2r_2 + b_2$.
- ► $c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + (b_1 + b_2).$
- $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(r_1m_2 + r_1r_2 + r_2m_1) + b \cdot \dots$

- Ring operations reflect operations on plaintext.
- ▶ $c_1 = m_2 + 2r_1 + b_1$.
- ► $c_2 = m_2 + 2r_2 + b_2$.
- ► $c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + (b_1 + b_2).$
- $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(r_1m_2 + r_1r_2 + r_2m_1) + b \cdot \dots$

- Ring operations reflect operations on plaintext.
- ▶ $c_1 = m_2 + 2r_1 + b_1$.
- ► $c_2 = m_2 + 2r_2 + b_2$.
- ► $c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + (b_1 + b_2).$
- $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(r_1m_2 + r_1r_2 + r_2m_1) + b \cdot \dots$

- Ring operations reflect operations on plaintext.
- ▶ $c_1 = m_2 + 2r_1 + b_1$.
- ► $c_2 = m_2 + 2r_2 + b_2$.
- ► $c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + (b_1 + b_2).$
- $c_1 \cdot c_2 = m_1 \cdot m_2 + 2(r_1m_2 + r_1r_2 + r_2m_1) + b \cdot \dots$

 $\checkmark\,$ Can decrypt as long as noise stays small.

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{def}}}{\leftarrow} R_2$.
- $\blacktriangleright \text{ Sample } B \stackrel{\textcircled{\tiny{}}{\leftarrow}}{\leftarrow} R_q.$
- Sample $e \stackrel{\text{\tiny{(1)}}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- $\blacktriangleright \text{ Note: } \langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{def}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\mbox{\tiny{\sc black \ }}}{\leftarrow} R_q.$
- Sample $e \stackrel{\textcircled{\scale}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- ▶ Note: $\langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{\scale{s}}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\mbox{\tiny{\sc black \ }}}{\leftarrow} R_q.$
- Sample $e \stackrel{\textcircled{\scale}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- $\blacktriangleright \text{ Note: } \langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{\scale{s}}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\textcircled{\scalebox{\tiny ∞}}}{\leftarrow} R_q.$
- Sample $e \stackrel{\mbox{\sc end}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- $\blacktriangleright \text{ Note: } \langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{\scale{s}}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\textcircled{\scalebox{\tiny{\bullet}}}}{\leftarrow} R_q$.
- Sample $e \stackrel{\text{\tiny{def}}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- ▶ Note: $\langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{\scale{s}}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\text{\tiny{def}}}{\leftarrow} R_q$.
- Sample $e \stackrel{\text{\tiny{def}}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- ▶ Note: $\langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{\scale{s}}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\text{\tiny{def}}}{\leftarrow} R_q$.
- Sample $e \stackrel{\text{\tiny{\scale{scale{s}}}}{\leftarrow}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- $\blacktriangleright \text{ Note: } \langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$
$\mathsf{KeyGen}(1^{\kappa})$

- Fix ring $R = \mathbb{Z}[x]/\Phi(x)$ as before.
- Pick modulus q and let $R_q = R/qR$.
- Sample $s \stackrel{\text{\tiny{\scale{s}}}}{\leftarrow} R_2$.
- Sample $B \stackrel{\text{\tiny{def}}}{\leftarrow} R_q$.
- Sample $e \stackrel{\text{\tiny{\scale{scale{s}}}}{\leftarrow}}{\leftarrow} R_2$.
- $\blacktriangleright b \leftarrow Bs + 2e.$
- ▶ Return $sk \leftarrow \mathbf{s} = (1, s)$, $pk \leftarrow \mathbf{A} = (b, -B)$.
- Note: $\langle \mathbf{A}, \mathbf{s} \rangle = 1 \cdot b B \cdot s = 2e.$

$\mathsf{Encrypt}(pk, m)$

- ▶ $\mathbf{m} \leftarrow (m, 0).$
- $\blacktriangleright r \stackrel{\textcircled{\scale}}{\leftarrow} R_2.$
- Return $\mathbf{c} \leftarrow \mathbf{m} + r \cdot \mathbf{A} \in R_q^2$.

- $\blacktriangleright \text{ Return } m \leftarrow \langle \mathbf{c}, \mathbf{s} \rangle \mod 2.$
- ▶ Note: $\langle \mathbf{c}, \mathbf{s} \rangle = m + r(Bs + 2e) rBs = m + 2re$.

$\mathsf{Encrypt}(pk, m)$

- ▶ $\mathbf{m} \leftarrow (m, 0).$
- $\blacktriangleright \ r \stackrel{\text{\tiny{\blacksquare}}}{\leftarrow} R_2.$
- Return $\mathbf{c} \leftarrow \mathbf{m} + r \cdot \mathbf{A} \in R_q^2$.

- $\blacktriangleright \text{ Return } m \leftarrow \langle \mathbf{c}, \mathbf{s} \rangle \mod 2.$
- ▶ Note: $\langle \mathbf{c}, \mathbf{s} \rangle = m + r(Bs + 2e) rBs = m + 2re$.

Encrypt(*pk*, *m*)

- ▶ $\mathbf{m} \leftarrow (m, 0)$.
- $\triangleright r \stackrel{\otimes}{\leftarrow} R_2.$
- Return $\mathbf{c} \leftarrow \mathbf{m} + r \cdot \mathbf{A} \in R_q^2$.

- $\blacktriangleright \text{ Return } m \leftarrow \langle \mathbf{c}, \mathbf{s} \rangle \mod 2.$
- ▶ Note: $\langle \mathbf{c}, \mathbf{s} \rangle = m + r(Bs + 2e) rBs = m + 2re$.

Encrypt(*pk*, *m*)

- ▶ $\mathbf{m} \leftarrow (m, 0).$
- $\triangleright r \stackrel{\otimes}{\leftarrow} R_2.$
- Return $\mathbf{c} \leftarrow \mathbf{m} + r \cdot \mathbf{A} \in R_q^2$.

- Return $m \leftarrow \langle \mathbf{c}, \mathbf{s} \rangle \mod 2$.
- ▶ Note: $\langle \mathbf{c}, \mathbf{s} \rangle = m + r(Bs + 2e) rBs = m + 2re$.

Encrypt(*pk*, *m*)

- ▶ $\mathbf{m} \leftarrow (m, 0)$.
- $\blacktriangleright r \stackrel{\otimes}{\leftarrow} R_2.$
- Return $\mathbf{c} \leftarrow \mathbf{m} + r \cdot \mathbf{A} \in R_q^2$.

Decrypt(sk, c)

- Return $m \leftarrow \langle \mathbf{c}, \mathbf{s} \rangle \mod 2$.
- ▶ Note: $\langle \mathbf{c}, \mathbf{s} \rangle = m + r(Bs + 2e) rBs = m + 2re$.

BGV Encryption Scheme - Homomorphic Operations

Adding two ciphertexts adds their plaintext:

$$\langle \mathbf{c}_1, \mathbf{s}
angle + \langle \mathbf{c}_2, \mathbf{s}
angle = \langle \mathbf{c}_1 + \mathbf{c}_2, \mathbf{s}
angle$$

Multiplication is more difficult:

$$\langle \mathbf{c}_1, \mathbf{s}
angle \cdot \langle \mathbf{c}_2, \mathbf{s}
angle = \mathbf{c}_1^t (\mathbf{s} \oplus \mathbf{s}) \mathbf{c}_2 = \langle \mathbf{c}_1 \oplus \mathbf{c}_2, \mathbf{s} \oplus \mathbf{s}
angle$$

"Key switching" (Out of scope)

BGV Encryption Scheme - Homomorphic Operations

Adding two ciphertexts adds their plaintext:

$$\langle \mathbf{c}_1, \mathbf{s}
angle + \langle \mathbf{c}_2, \mathbf{s}
angle = \langle \mathbf{c}_1 + \mathbf{c}_2, \mathbf{s}
angle$$

Multiplication is more difficult:

$$\langle \mathbf{c}_1, \mathbf{s}
angle \cdot \langle \mathbf{c}_2, \mathbf{s}
angle = \mathbf{c}_1^t (\mathbf{s} \oplus \mathbf{s}) \mathbf{c}_2 = \langle \mathbf{c}_1 \oplus \mathbf{c}_2, \mathbf{s} \oplus \mathbf{s}
angle$$

"Key switching" (Out of scope)

BGV Encryption Scheme - Homomorphic Operations

Adding two ciphertexts adds their plaintext:

$$\langle \mathbf{c}_1, \mathbf{s}
angle + \langle \mathbf{c}_2, \mathbf{s}
angle = \langle \mathbf{c}_1 + \mathbf{c}_2, \mathbf{s}
angle$$

Multiplication is more difficult:

$$\langle \mathbf{c}_1, \mathbf{s}
angle \cdot \langle \mathbf{c}_2, \mathbf{s}
angle = \mathbf{c}_1^t (\mathbf{s} \oplus \mathbf{s}) \mathbf{c}_2 = \langle \mathbf{c}_1 \oplus \mathbf{c}_2, \mathbf{s} \oplus \mathbf{s}
angle$$

"Key switching" (Out of scope)

Ciphertext Switching

► FHE computation: BGV scheme.

ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
 - Encrypt BGV secret key under Gentry.
 - Decrypt homomorphically.

- ▶ FHE computation: BGV scheme.
- ► ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
 - Encrypt BGV secret key under Gentry.
 - Decrypt homomorphically.

- ▶ FHE computation: BGV scheme.
- ZK proof: Gentry's scheme.

Goal:

Switch ciphertext via bootstrapping-like approach:

- Encrypt BGV secret key under Gentry.
- Decrypt homomorphically.

- ▶ FHE computation: BGV scheme.
- ► ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
 - Encrypt BGV secret key under Gentry.
 - Decrypt homomorphically.

- ▶ FHE computation: BGV scheme.
- ► ZK proof: Gentry's scheme.

Goal:

- Switch ciphertext via bootstrapping-like approach:
 - Encrypt BGV secret key under Gentry.
 - Decrypt homomorphically.

Ciphertext Spaces:

- ▶ BGV: R_q^2 .
- Gentry: $R \mod B_J^{pk}$.
- Require $qR \subset J$, i.e. $q = B_J^{pk} \cdot t$ with $t \in \mathbb{Z}^d$.
- For $x \in R$ we have: $(x \mod q) \mod B_J^{pk} = x \mod B_J^{pk}$.

- Ciphertext Spaces:
 - ▶ BGV: R_q^2 .
 - Gentry: $R \mod B_J^{pk}$.
- Require $qR \subset J$, i.e. $q = B_J^{pk} \cdot t$ with $t \in \mathbb{Z}^d$.
- For $x \in R$ we have: $(x \mod q) \mod B_J^{pk} = x \mod B_J^{pk}$.

- Ciphertext Spaces:
 - ▶ BGV: R_q^2 .
 - Gentry: $R \mod B_J^{pk}$.
- Require $qR \subset J$, i.e. $q = B_J^{pk} \cdot t$ with $t \in \mathbb{Z}^d$.
- For $x \in R$ we have: $(x \mod q) \mod B_J^{pk} = x \mod B_J^{pk}$.

- Ciphertext Spaces:
 - ► BGV: R_q^2 .
 - Gentry: $R \mod B_J^{pk}$.
- Require $qR \subset J$, i.e. $q = B_J^{pk} \cdot t$ with $t \in \mathbb{Z}^d$.
- For $x \in R$ we have: $(x \mod q) \mod B_J^{pk} = x \mod B_J^{pk}$.

- Ciphertext Spaces:
 - ► BGV: R_q^2 .
 - Gentry: $R \mod B_J^{pk}$.
- Require $qR \subset J$, i.e. $q = B_J^{pk} \cdot t$ with $t \in \mathbb{Z}^d$.
- For $x \in R$ we have: $(x \mod q) \mod B_J^{pk} = x \mod B_J^{pk}$.

Preparation:

- BGV secret key $\mathbf{s} = (1, s) \in R_q^2$.
- ▶ $s \in R_2 = R/I$.
- Encrypt secret key $\{s\}_{\mathsf{G}} = s + 2r + b \in (R \mod B_J^{pk}).$

- Encrypted BGV secret key $\{s\}_{G}$.
- ▶ BGV ciphertext $\{m\}_{BGV} = \mathbf{c} = (c_0, c_1) \in R_q^2$ with $\langle \mathbf{c}, \mathbf{s} \rangle = m + 2e$.
- Decrypt BGV ciphertext with encrypted private key!

Preparation:

- BGV secret key $\mathbf{s} = (1, s) \in R_q^2$.
- ▶ $s \in R_2 = R/I$.
- Encrypt secret key $\{s\}_{\mathsf{G}} = s + 2r + b \in (R \mod B_J^{pk}).$

- Encrypted BGV secret key $\{s\}_{G}$.
- ▶ BGV ciphertext $\{m\}_{BGV} = \mathbf{c} = (c_0, c_1) \in R_q^2$ with $\langle \mathbf{c}, \mathbf{s} \rangle = m + 2e$.
- Decrypt BGV ciphertext with encrypted private key!

Preparation:

- BGV secret key $\mathbf{s} = (1, s) \in R_q^2$.
- ▶ $s \in R_2 = R/I$.
- Encrypt secret key $\{s\}_{\mathsf{G}} = s + 2r + b \in (R \mod B_J^{pk}).$

- Encrypted BGV secret key $\{s\}_{G}$.
- ▶ BGV ciphertext $\{m\}_{BGV} = \mathbf{c} = (c_0, c_1) \in R_q^2$ with $\langle \mathbf{c}, \mathbf{s} \rangle = m + 2e$.
- Decrypt BGV ciphertext with encrypted private key!

Preparation:

- BGV secret key $\mathbf{s} = (1, s) \in R_q^2$.
- ▶ $s \in R_2 = R/I$.
- Encrypt secret key $\{s\}_{\mathsf{G}} = s + 2r + b \in (R \mod B_J^{pk}).$

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- ▶ BGV ciphertext $\{m\}_{BGV} = \mathbf{c} = (c_0, c_1) \in R_q^2$ with $\langle \mathbf{c}, \mathbf{s} \rangle = m + 2e$.

Decrypt BGV ciphertext with encrypted private key!

Preparation:

- BGV secret key $\mathbf{s} = (1, s) \in R_q^2$.
- ▶ $s \in R_2 = R/I$.
- Encrypt secret key $\{s\}_{\mathsf{G}} = s + 2r + b \in (R \mod B_J^{pk}).$

Publicly Available:

- Encrypted BGV secret key $\{s\}_{G}$.
- BGV ciphertext $\{m\}_{BGV} = \mathbf{c} = (c_0, c_1) \in R_q^2$ with $\langle \mathbf{c}, \mathbf{s} \rangle = m + 2e$.

Decrypt BGV ciphertext with encrypted private key!

Preparation:

- BGV secret key $\mathbf{s} = (1, s) \in R_q^2$.
- ▶ $s \in R_2 = R/I$.
- Encrypt secret key $\{s\}_{\mathsf{G}} = s + 2r + b \in (R \mod B_J^{pk}).$

- Encrypted BGV secret key $\{s\}_{G}$.
- ▶ BGV ciphertext $\{m\}_{BGV} = \mathbf{c} = (c_0, c_1) \in R_q^2$ with $\langle \mathbf{c}, \mathbf{s} \rangle = m + 2e$.
- Decrypt BGV ciphertext with encrypted private key!

 $\langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk}$ $= c_0 + c_1 \cdot \{s\}_{\mathsf{G}}$ $= c_0 + c_1 \cdot (s + 2r + b)$ $= c_0 + c_1 \cdot s + c_1 \cdot (2r + b)$ $= m + 2e + kq + 2c_1r + c_1b$ $= \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point } \in J}$

• $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

$$\blacktriangleright \{s\}_{\mathsf{G}} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

$$\begin{array}{l} \langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk} \\ = c_0 + c_1 \cdot \{s\}_{\mathsf{G}} \\ = c_0 + c_1 \cdot (s + 2r + b) \\ = c_0 + c_1 \cdot s + c_1 \cdot (2r + b) \\ = m + 2e + kq + 2c_1r + c_1b \\ = \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point} \in} \end{array}$$

► $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

•
$$\{s\}_{G} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

$$\langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk}$$

$$= c_0 + c_1 \cdot \{s\}_{\mathsf{G}}$$

$$= c_0 + c_1 \cdot (s + 2r + b)$$

$$= c_0 + c_1 \cdot s + c_1 \cdot (2r + b)$$

$$= m + 2e + kq + 2c_1r + c_1b$$

$$= \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point } \in}$$

► $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

▶
$$\{s\}_{G} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

$$\langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk}$$

$$= c_0 + c_1 \cdot \{s\}_{\mathsf{G}}$$

$$= c_0 + c_1 \cdot (s + 2r + b)$$

$$= c_0 + c_1 \cdot s + c_1 \cdot (2r + b)$$

$$= m + 2e + kq + 2c_1r + c_1b$$

$$= \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point } \in}$$

• $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

$$\blacktriangleright \{s\}_{\mathsf{G}} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

$$\langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk}$$

$$= c_0 + c_1 \cdot \{s\}_{\mathsf{G}}$$

$$= c_0 + c_1 \cdot (s + 2r + b)$$

$$= c_0 + c_1 \cdot s + c_1 \cdot (2r + b)$$

$$= m + 2e + kq + 2c_1r + c_1b$$

$$= \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point (expl)}}$$

▶ $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

$$\blacktriangleright \{s\}_{\mathsf{G}} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

$$\langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk}$$

$$= c_0 + c_1 \cdot \{s\}_{\mathsf{G}}$$

$$= c_0 + c_1 \cdot (s + 2r + b)$$

$$= c_0 + c_1 \cdot s + c_1 \cdot (2r + b)$$

$$= m + 2e + kq + 2c_1r + c_1b$$

$$= \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point } \in J}$$

• $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

$$\blacktriangleright \{s\}_{\mathsf{G}} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

$$\langle \{m\}_{\mathsf{BGV}}, \{\mathbf{s}\}_{\mathsf{G}} \rangle \mod B_J^{pk}$$

$$= c_0 + c_1 \cdot \{s\}_{\mathsf{G}}$$

$$= c_0 + c_1 \cdot (s + 2r + b)$$

$$= c_0 + c_1 \cdot s + c_1 \cdot (2r + b)$$

$$= m + 2e + kq + 2c_1r + c_1b$$

$$= \underbrace{m + 2(e + c_1r)}_{\mathsf{Noise}} + \underbrace{(kq + c_1b)}_{\mathsf{Lattice point } \in J}$$

• $\{m\}_{\mathsf{BGV}} = (c_0, c_1).$

$$\blacktriangleright \{s\}_{\mathsf{G}} = s + 2r + b.$$

- $\blacktriangleright c_0 + c_1 \cdot s = m + 2e \mod q.$
- ▶ $q \in J$.

Zero-Knowledge Proof of Decryption

Sigma Protocol

• Prover P and Verifier V.

- ▶ *P* sends commitment *I*.
- \blacktriangleright V sends challenge e.
- \blacktriangleright *P* sends response *r*.
- ► V verifies.

Sigma Protocol

- Prover P and Verifier V.
- ▶ *P* sends commitment *I*.
- \blacktriangleright V sends challenge e.
- \blacktriangleright *P* sends response *r*.
- ► V verifies.

Sigma Protocol

- Prover P and Verifier V.
- ▶ *P* sends commitment *I*.
- ► V sends challenge e.
- \blacktriangleright *P* sends response *r*.
- ► V verifies.

Sigma Protocol

- Prover P and Verifier V.
- ▶ *P* sends commitment *I*.
- ► V sends challenge e.
- \blacktriangleright *P* sends response *r*.
- ► V verifies.

Sigma Protocol

- Prover P and Verifier V.
- ▶ *P* sends commitment *I*.
- \blacktriangleright V sends challenge e.
- \blacktriangleright *P* sends response *r*.
- V verifies.

(Wanted) Properties

Correctness:

Can a true statement be proven?

Special Soundness:

- Given two transcripts (I, e_0, r_0) and (I, e_1, r_1) .
- ► Can we compute the secret?

Special Honest Verifier Zero-Knowledge:

- ► Given challenge *e*.
- Can transcripts be generated without knowledge of secret?

(Wanted) Properties

Correctness:

Can a true statement be proven?

Special Soundness:

- Given two transcripts (I, e_0, r_0) and (I, e_1, r_1) .
- Can we compute the secret?

Special Honest Verifier Zero-Knowledge:

- ► Given challenge *e*.
- Can transcripts be generated without knowledge of secret?

(Wanted) Properties

Correctness:

Can a true statement be proven?

Special Soundness:

- Given two transcripts (I, e_0, r_0) and (I, e_1, r_1) .
- ► Can we compute the secret?

Special Honest Verifier Zero-Knowledge:

- ► Given challenge *e*.
- Can transcripts be generated without knowledge of secret?

Statement: A given ciphertext c = m + 2r + b is an encryption of 0.

P Choose encryption c' = 2r' + b' of 0. Send c' to the verifier.

- V Choose challenge $e \stackrel{\text{\tiny{def}}}{\leftarrow} \{0,1\}$ uniformly at random. Send e to the prover.
- P Compute response $d \leftarrow e \cdot b + b'$. Send d to the verifier.
- V Verify that d is a valid lattice point, and check that $e \cdot c + c' d$ is well formed and sufficiently small.

Statement: A given ciphertext c = m + 2r + b is an encryption of 0.

P Choose encryption c' = 2r' + b' of 0. Send c' to the verifier.

V Choose challenge $e \stackrel{\text{\tiny{(1)}}}{\leftarrow} \{0, 1\}$ uniformly at random. Send e to the prover.

P Compute response $d \leftarrow e \cdot b + b'$. Send d to the verifier.

V Verify that d is a valid lattice point, and check that $e \cdot c + c' - d$ is well formed and sufficiently small.

Statement: A given ciphertext c = m + 2r + b is an encryption of 0.

P Choose encryption c' = 2r' + b' of 0. Send c' to the verifier.

- V Choose challenge $e \stackrel{\text{\tiny{def}}}{\leftarrow} \{0,1\}$ uniformly at random. Send e to the prover.
- P Compute response $d \leftarrow e \cdot b + b'$. Send d to the verifier.
- V Verify that d is a valid lattice point, and check that $e \cdot c + c' d$ is well formed and sufficiently small.

Statement: A given ciphertext c = m + 2r + b is an encryption of 0.

P Choose encryption c' = 2r' + b' of 0. Send c' to the verifier.

- V Choose challenge $e \stackrel{\text{\tiny{def}}}{\leftarrow} \{0,1\}$ uniformly at random. Send e to the prover.
- P Compute response $d \leftarrow e \cdot b + b'$. Send d to the verifier.
- V Verify that d is a valid lattice point, and check that $e \cdot c + c' d$ is well formed and sufficiently small.

Statement: A given ciphertext c = m + 2r + b is an encryption of 0.

- P Choose encryption c' = 2r' + b' of 0. Send c' to the verifier.
- V Choose challenge $e \stackrel{\text{\tiny{def}}}{\leftarrow} \{0,1\}$ uniformly at random. Send e to the prover.
- P Compute response $d \leftarrow e \cdot b + b'$. Send d to the verifier.
- V Verify that d is a valid lattice point, and check that $e \cdot c + c' d$ is well formed and sufficiently small.

Statement: A given ciphertext c = m + 2r + b is an encryption of 0.

P Choose encryption c' = 2r' + b' of 0. Send c' to the verifier.

- V Choose challenge $e \stackrel{\text{\tiny{def}}}{\leftarrow} \{0,1\}$ uniformly at random. Send e to the prover.
- P Compute response $d \leftarrow e \cdot b + b'$. Send d to the verifier.
- V Verify that d is a valid lattice point, and check that $e \cdot c + c' d$ is well formed and sufficiently small.

Correctness

If the statement is correct, then V verifies:

✓ $d \in J$ is a valid lattice point. By definition, b and b' are lattice points. ✓ $e \cdot c + c' - d$ is well formed and sufficiently small. This is $2(e \cdot r + r')$, which is the noise vector of $e \cdot c + c'$. If the statement is correct, then V verifies:

✓ $d \in J$ is a valid lattice point. By definition, b and b' are lattice points. ✓ $e \cdot c + c' - d$ is well formed and sufficiently small. This is $2(e \cdot r + r')$, which is the noise vector of $e \cdot c + c'$. If the statement is correct, then V verifies:

✓ $d \in J$ is a valid lattice point. By definition, b and b' are lattice points. ✓ $e \cdot c + c' - d$ is well formed and sufficiently small. This is $2(e \cdot r + r')$, which is the noise vector of $e \cdot c + c'$.

• If we know $b \in J$ from c = m + 2r + b, we can get m.

$\Rightarrow b$ is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

• If we know $b \in J$ from c = m + 2r + b, we can get m.

 \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- If we know $b \in J$ from c = m + 2r + b, we can get m.
- \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- If we know $b \in J$ from c = m + 2r + b, we can get m.
- \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- If we know $b \in J$ from c = m + 2r + b, we can get m.
- \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1 b + b' - e_0 b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- If we know $b \in J$ from c = m + 2r + b, we can get m.
- \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- If we know $b \in J$ from c = m + 2r + b, we can get m.
- \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- If we know $b \in J$ from c = m + 2r + b, we can get m.
- \Rightarrow *b* is a *witness* for the statement we want to prove.

Given two transcripts with same commitment: (c', e_0, d_0) and (c', e_1, d_1) .

$$(e_1 - e_0)^{-1} \cdot (d_1 - d_0)$$

= $(e_1 - e_0)^{-1} \cdot (e_1b + b' - e_0b - b')$
= $(e_1 - e_0)^{-1} \cdot (e_1 - e_0) \cdot b$
= b

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(*c*, *e*):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).
- ✓ Transcript is valid. In particular $e \cdot c + c' d = 2\hat{r}$ is well-formed noise. ✓ Honest verifier does not learn anything about *b*.

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(*c*, *e*):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright \ c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(c, e):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright \ c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(c, e):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright \ c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(c, e):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(c, e):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(c, e):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).
- ✓ Transcript is valid. In particular $e \cdot c + c' d = 2\hat{r}$ is well-formed noise. ✓ Honest verifier does not learn anything about *b*.

- ► Honest verifier should not learn anything from an execution of the protocol.
- ▶ I.e. Simulator exists, that generates transcripts for arbitrary challenges *e*.

Simulator(c, e):

- Sample^{*} random noise vector \hat{r} .
- Compute lattice point $d \in J$ corresponding to $2\hat{r}$. I.e. $\hat{c} = 2\hat{r} + d$.
- $\blacktriangleright c' \leftarrow \hat{c} e \cdot c.$
- Output transcript (c', e, d).
- ✓ Transcript is valid. In particular $e \cdot c + c' d = 2\hat{r}$ is well-formed noise.
- $\checkmark\,$ Honest verifier does not learn anything about b.

- Single bit plaintexts with current construction.
 - Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
 - Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
 - Ensure that encrypted secret key during key switching is later used in ZK proof.
 - ▶ Addressed in [Car+18]: verify integrity of single message.
 - Doubt that this is enough!

- Single bit plaintexts with current construction.
 - Parameters can be chosen to support larger plaintext spaces.
- ► Bootstrapping during FHE computation: Encryption uses randomness.
 - Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
 - Ensure that encrypted secret key during key switching is later used in ZK proof.
 - ▶ Addressed in [Car+18]: verify integrity of single message.
 - Doubt that this is enough!

- Single bit plaintexts with current construction.
 - Parameters can be chosen to support larger plaintext spaces.
- Bootstrapping during FHE computation: Encryption uses randomness.
 - Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
 - Ensure that encrypted secret key during key switching is later used in ZK proof.
 - ▶ Addressed in [Car+18]: verify integrity of single message.
 - Doubt that this is enough!

- Single bit plaintexts with current construction.
 - Parameters can be chosen to support larger plaintext spaces.
- ► Bootstrapping during FHE computation: Encryption uses randomness.
 - Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
 - Ensure that encrypted secret key during key switching is later used in ZK proof.
 - ► Addressed in [Car+18]: verify integrity of single message.
 - Doubt that this is enough!

- Single bit plaintexts with current construction.
 - Parameters can be chosen to support larger plaintext spaces.
- ► Bootstrapping during FHE computation: Encryption uses randomness.
 - Everyone should be able to retrace computation on ciphertexts.
- Integrity during ciphertext switching?
 - Ensure that encrypted secret key during key switching is later used in ZK proof.
 - ► Addressed in [Car+18]: verify integrity of single message.
 - Doubt that this is enough!
• Challenge $e \in \{0, 1\}$ too simple.

- With larger $e, e \cdot c + c'$ might be undecryptable
 - \rightarrow choose parameters wisely.
- Maybe use $e \in R_2$?
- ► Do we really need a ZK protocol in the end?
 - Only want to protect secret inputs + secret key.
 - ▶ Isn't it enough to simply publish b's from c = m + 2r + b?

• Challenge $e \in \{0, 1\}$ too simple.

- \blacktriangleright With larger $e,~e\cdot c+c'$ might be undecryptable
 - ightarrow choose parameters wisely.
- Maybe use $e \in R_2$?
- Do we really need a ZK protocol in the end?
 - Only want to protect secret inputs + secret key.
 - ▶ Isn't it enough to simply publish *b*'s from c = m + 2r + b?

- Challenge $e \in \{0, 1\}$ too simple.
 - \blacktriangleright With larger $e,~e\cdot c+c'$ might be undecryptable
 - \rightarrow choose parameters wisely.
 - Maybe use $e \in R_2$?
- Do we really need a ZK protocol in the end?
 - Only want to protect secret inputs + secret key.
 - ▶ Isn't it enough to simply publish b's from c = m + 2r + b?

- Challenge $e \in \{0, 1\}$ too simple.
 - \blacktriangleright With larger $e\text{, }e\cdot c+c^{\prime}$ might be undecryptable
 - \rightarrow choose parameters wisely.
 - Maybe use $e \in R_2$?
- Do we really need a ZK protocol in the end?
 - Only want to protect secret inputs + secret key.
 - ▶ Isn't it enough to simply publish b's from c = m + 2r + b?

- Challenge $e \in \{0, 1\}$ too simple.
 - \blacktriangleright With larger $e,~e\cdot c+c'$ might be undecryptable
 - \rightarrow choose parameters wisely.
 - Maybe use $e \in R_2$?
- Do we really need a ZK protocol in the end?
 - Only want to protect secret inputs + secret key.
 - ▶ Isn't it enough to simply publish b's from c = m + 2r + b?

- Challenge $e \in \{0, 1\}$ too simple.
 - \blacktriangleright With larger $e\text{, }e\cdot c+c^{\prime}$ might be undecryptable
 - \rightarrow choose parameters wisely.
 - Maybe use $e \in R_2$?
- Do we really need a ZK protocol in the end?
 - Only want to protect secret inputs + secret key.
 - ▶ Isn't it enough to simply publish b's from c = m + 2r + b?

Zero-Knowledge Proof of Decryption for FHE Ciphertexts

Thank you for your attention!

Questions?

< □ ▶39 / 39

References I

- [BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. "(Leveled) fully homomorphic encryption without bootstrapping". In: ACM Transactions on Computation Theory (TOCT) 6.3 (2014), p. 13.
- [Car+18] Christopher Carr et al. Zero-Knowledge Proof of Decryption for FHE Ciphertexts. Tech. rep. Cryptology ePrint Archive, Report 2018/026, 2018. https://eprint.iacr.org/2018/026, 2018.
- [Gen09] Craig Gentry. "Fully homomorphic encryption using ideal lattices". In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. ACM. 2009, pp. 169–178.
- [GH11] Craig Gentry and Shai Halevi. "Implementing gentry's fully-homomorphic encryption scheme". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2011, pp. 129–148.