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Scenario

I Multiple users with secret input.

I Compute some function on inputs.

I Everyone should be convinced that the output is indeed correct.

I Inputs must not be revealed!
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Multi-Party Computation

I Interactive protocol amongst n parties.

I Perform computation cooperatively (By some protocol).

Problem:
I Everybody must be online.

I Asynchronous setting.

I Large group setting.
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Semi-Trusted Authority

I Authority is trusted to know the secret inputs.

I Authority is not trusted to perform correct computations.

I Use fully homomorphic encryption to perform computation on encrypted
inputs.

I Get ciphertext of the output.

I Authority decrypts and announces output.

I Authority proves correctness of output.

I Secrets must not be revealed!
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Fully Homomorphic Encryption
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Circuits

I Think of hardware circuits.

I Consist of gates (AND, OR, NAND, . . . ).
I Here: Set of gates Γ := {·,+}.

I Only consider functions that can be expressed as circuit of gates in Γ.
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Somewhat Homomorphic Encryption (SHE)

I KeyGenE(1
κ)→ (sk, pk).

I EncryptE(pk, π)→ ψ.

I DecryptE(sk, ψ)→ π.

I Set of permitted circuits CE .

I EvaluateE(pk, C, ψ1, . . . ψt)→ ψ′,
C ∈ CE .

Correctness:

For C ∈ CE , plaintexts πi and their encryption ψi ← EncryptE(pk, πi), 1 ≤ i ≤ t:

ψ′ ← EvaluateE(pk, C, ψ1, . . . , ψt)⇒ DecryptE(sk, ψ
′) = C(π1, . . . , πt).

I Ciphertext size and computation times in poly(κ).
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Fully Homomorphic Encryption (FHE)

Leveled Fully Homomorphic Encryption:
I CE contains all circuits of a user chosen circuit depth.

I Ciphertext size must be independent of circuit depth.

Fully Homomorphic Encryption:
I CE contains all circuits.
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Bootstrapping

I The following encryption schemes contain “noise”.

I Can decrypt ⇔ Noise small.

I Homomorphic operations → Noise grows → Can’t decrypt.

I “Refresh” ciphertext after homomorphic operations.

Basic Idea:
I Encrypt ciphertext under new key.

I Evaluate decryption circuit homomorphically.

X Create (leveled) FHE scheme from SHE scheme.
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Circular Security

Definition:
I SHE scheme E is circular secure, iff it is IND-CPA given encryptions of it

secret key bits.

I Bootstrapping: Encrypt ciphertext under same key.

I Don’t have to chain secret keys to get leveled FHE from bootstrapping.

I Get FHE scheme from single SHE secret key.
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Polynomial Rings

I Common ring R = Z[x]/Φ(x).

I Φ(x) = xd + 1 with d = 2δ.

I Ring of polynomials with degree at most d− 1.

I xd ≡ −1 mod Φ(x).

I For a ∈ Z[x]/Φ(x): coefficient vector a ∈ Zd.

I Polynomial addition = vector addition.

I Multiplication looks similar to complex numbers
(for d = 2)...

1

x

0
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Ring Ideals

Definition:
I I ⊂ R is called ideal iff for all a, b ∈ I, r ∈ R:

I 0 ∈ I.
I a+ b ∈ I.
I r · a ∈ I.
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Lattices & Ideal Lattices

I Consider vector space Rd and some basis B ∈ Zd×d.

I Lattice L = L(B) is integer linear combination of
columns in B.

I Infinite number of lattice bases for d ≥ 2.

I Ideal lattice: Ring elements corresponding to
elements in L form ideal.

I Quotient ring R/L⇔ Zd mod B
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Lattices
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Lattice Basis - Rotation Basis

I Generating element v ∈ R.

I BRot(v) = {bi ∈ R | bi = v · xi}i∈{0,...,d−1}.

Important Feature:
I Basis vectors are (almost) orthogonal.

I R mod BRot(v) contains a large ball around zero.
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Lattice Basis - Hermite Normal Form

Definition:
I A matrix H ∈ Zd×d is in HNF, if it is a non-singular non-negative

lower-triangular matrix such that each row has a unique maximum entry,
which is on the diagonal.

I HNF can be computed from any basis.

I Unique HNF per lattice.

⇒ HNF is least revealing basis.
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Gentry’s Encryption Scheme [Gen09; GH11]

I Two ideals I and J in ring R.

I Ideal I = 2R defines the plaintext space R/I.

I Ideal J defines the ciphertext space R/J .

I A “powerful” basis is used as secret key (rotation basis).

I A “weak” basis is used as public key (HNF).
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Gentry’s Encryption Scheme [Gen09; GH11]

KeyGen(1κ)
I Fix ring R, and basis BI of ideal I = 2R.

I Generate ideal J co-prime to I and two bases (Bsk
J , B

pk
J ).

I Return pk ← (R,BI , B
pk
J ) and sk ← (R,BI , B

sk
J ).

Encrypt(pk, m)

I Sample noise rI ∈ I with ri ← {0,±1}.
I Return c← m+ rI mod Bpk

J = m+ 2r + b for b ∈ J .

Decrypt(sk, c)
I Return m← (c mod Bsk

J ) mod BI .
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Gentry’s Encryption Scheme - Homomorphic Operations

I Ring operations reflect operations on plaintext.

I c1 = m2 + 2r1 + b1.

I c2 = m2 + 2r2 + b2.

I c1 + c2 = (m1 +m2) + 2(r1 + r2) + (b1 + b2).

I c1 · c2 = m1 ·m2 + 2(r1m2 + r1r2 + r2m1) + b · . . .

X Can decrypt as long as noise stays small.

21 / 39



Gentry’s Encryption Scheme - Homomorphic Operations

I Ring operations reflect operations on plaintext.

I c1 = m2 + 2r1 + b1.

I c2 = m2 + 2r2 + b2.

I c1 + c2 = (m1 +m2) + 2(r1 + r2) + (b1 + b2).

I c1 · c2 = m1 ·m2 + 2(r1m2 + r1r2 + r2m1) + b · . . .

X Can decrypt as long as noise stays small.

21 / 39



Gentry’s Encryption Scheme - Homomorphic Operations

I Ring operations reflect operations on plaintext.

I c1 = m2 + 2r1 + b1.

I c2 = m2 + 2r2 + b2.

I c1 + c2 = (m1 +m2) + 2(r1 + r2) + (b1 + b2).

I c1 · c2 = m1 ·m2 + 2(r1m2 + r1r2 + r2m1) + b · . . .

X Can decrypt as long as noise stays small.

21 / 39



Gentry’s Encryption Scheme - Homomorphic Operations

I Ring operations reflect operations on plaintext.

I c1 = m2 + 2r1 + b1.

I c2 = m2 + 2r2 + b2.

I c1 + c2 = (m1 +m2) + 2(r1 + r2) + (b1 + b2).

I c1 · c2 = m1 ·m2 + 2(r1m2 + r1r2 + r2m1) + b · . . .

X Can decrypt as long as noise stays small.

21 / 39



Gentry’s Encryption Scheme - Homomorphic Operations

I Ring operations reflect operations on plaintext.

I c1 = m2 + 2r1 + b1.

I c2 = m2 + 2r2 + b2.

I c1 + c2 = (m1 +m2) + 2(r1 + r2) + (b1 + b2).

I c1 · c2 = m1 ·m2 + 2(r1m2 + r1r2 + r2m1) + b · . . .

X Can decrypt as long as noise stays small.

21 / 39



BGV Encryption Scheme (simplified) [BGV14; Car+18]

KeyGen(1κ)
I Fix ring R = Z[x]/Φ(x) as before.

I Pick modulus q and let Rq = R/qR.

I Sample s← R2.

I Sample B ← Rq.

I Sample e← R2.

I b← Bs+ 2e.

I Return sk ← s = (1, s), pk ← A = (b,−B).

I Note: 〈A, s〉 = 1 · b−B · s = 2e.
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BGV Encryption Scheme (simplified) [BGV14; Car+18]

Encrypt(pk, m)
I m← (m, 0).

I r ← R2.

I Return c←m + r ·A ∈ R2
q .

Decrypt(sk, c)
I Return m← 〈c, s〉 mod 2.

I Note: 〈c, s〉 = m+ r(Bs+ 2e)− rBs = m+ 2re.
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BGV Encryption Scheme - Homomorphic Operations

I Adding two ciphertexts adds their plaintext:

〈c1, s〉+ 〈c2, s〉 = 〈c1 + c2, s〉

I Multiplication is more difficult:

〈c1, s〉 · 〈c2, s〉 = ct1(s⊕ s)c2 = 〈c1 ⊕ c2, s⊕ s〉

I “Key switching” (Out of scope)
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Ciphertext Switching
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Switching Ciphertexts [Car+18]

I FHE computation: BGV scheme.

I ZK proof: Gentry’s scheme.

Goal:
I Switch ciphertext via bootstrapping-like approach:

I Encrypt BGV secret key under Gentry.
I Decrypt homomorphically.
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Match Ciphertext Spaces

I Ciphertext Spaces:
I BGV: R2

q .

I Gentry: R mod Bpk
J .

I Require qR ⊂ J , i.e. q = Bpk
J · t with t ∈ Zd.

I For x ∈ R we have: (x mod q) mod Bpk
J = x mod Bpk

J .
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Switch BGV Ciphertext to Gentry Ciphertext

Preparation:
I BGV secret key s = (1, s) ∈ R2

q .

I s ∈ R2 = R/I.

I Encrypt secret key {s}G = s+ 2r + b ∈ (R mod Bpk
J ).

Publicly Available:
I Encrypted BGV secret key {s}G.

I BGV ciphertext {m}BGV = c = (c0, c1) ∈ R2
q with 〈c, s〉 = m+ 2e.

I Decrypt BGV ciphertext with encrypted private key!
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Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Homomorphically Decrypt BGV Ciphertext

〈{m}BGV, {s}G〉 mod Bpk
J

= c0 + c1 · {s}G
= c0 + c1 · (s+ 2r + b)

= c0 + c1 · s+ c1 · (2r + b)

= m+ 2e+ kq + 2c1r + c1b

= m+ 2(e+ c1r)︸ ︷︷ ︸
Noise

+ (kq + c1b)︸ ︷︷ ︸
Lattice point ∈J

I {m}BGV = (c0, c1).

I {s}G = s+ 2r + b.

I c0 + c1 · s = m+ 2e mod q.

I q ∈ J .

X Valid ciphertext if m+ 2(e+ c1r) is small enough.

29 / 39



Zero-Knowledge Proof of Decryption
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Sigma Protocol

I Prover P and Verifier V .

I P sends commitment I.

I V sends challenge e.

I P sends response r.

I V verifies.

Prover P Verifier V

Commitment I

Challenge e

Response r
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(Wanted) Properties

Correctness:
I Can a true statement be proven?

Special Soundness:
I Given two transcripts (I, e0, r0) and (I, e1, r1).

I Can we compute the secret?

Special Honest Verifier Zero-Knowledge:
I Given challenge e.

I Can transcripts be generated without knowledge of secret?
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The ZK Protocol [Car+18]

Statement: A given ciphertext c = m+ 2r + b is an encryption of 0.

P Choose encryption c′ = 2r′ + b′ of 0. Send c′ to the verifier.

V Choose challenge e← {0, 1} uniformly at random. Send e to the prover.

P Compute response d← e · b+ b′. Send d to the verifier.

V Verify that d is a valid lattice point, and check that e · c+ c′ − d is well
formed and sufficiently small.

Transcript: (c′, e, d).
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Correctness

If the statement is correct, then V verifies:

X d ∈ J is a valid lattice point. By definition, b and b′ are lattice points.

X e · c+ c′ − d is well formed and sufficiently small. This is 2(e · r + r′), which
is the noise vector of e · c+ c′.
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Special Soundness

I If we know b ∈ J from c = m+ 2r + b, we can get m.

⇒ b is a witness for the statement we want to prove.

Given two transcripts with same commitment: (c′, e0, d0) and (c′, e1, d1).

(e1 − e0)−1 · (d1 − d0)
= (e1 − e0)−1 · (e1b+ b′ − e0b− b′)
= (e1 − e0)−1 · (e1 − e0) · b
= b

X Witness b can be computed.
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Special Honest-Verifier Zero-Knowledge

I Honest verifier should not learn anything from an execution of the protocol.

I I.e. Simulator exists, that generates transcripts for arbitrary challenges e.

Simulator(c, e):
I Sample∗ random noise vector r̂.

I Compute lattice point d ∈ J corresponding to 2r̂. I.e. ĉ = 2r̂ + d.

I c′ ← ĉ− e · c.
I Output transcript (c′, e, d).

X Transcript is valid. In particular e · c+ c′ − d = 2r̂ is well-formed noise.

X Honest verifier does not learn anything about b.
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I c′ ← ĉ− e · c.
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Remarks on Fully Homomorphic Encryption Schemes

I Single bit plaintexts with current construction.
I Parameters can be chosen to support larger plaintext spaces.

I Bootstrapping during FHE computation: Encryption uses randomness.
I Everyone should be able to retrace computation on ciphertexts.

I Integrity during ciphertext switching?
I Ensure that encrypted secret key during key switching is later used in ZK

proof.
I Addressed in [Car+18]: verify integrity of single message.
I Doubt that this is enough!
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Remarks on Zero-Knowledge Proof of Decryption

I Challenge e ∈ {0, 1} too simple.
I With larger e, e · c+ c′ might be undecryptable
→ choose parameters wisely.

I Maybe use e ∈ R2?

I Do we really need a ZK protocol in the end?
I Only want to protect secret inputs + secret key.
I Isn’t it enough to simply publish b’s from c = m+ 2r + b?
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Zero-Knowledge Proof of Decryption

for FHE Ciphertexts

Thank you for your attention!

Questions?
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