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Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:

• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2
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Tamarin-Prover
Overview

• Developed by Simon Meier and Benedikt Schmidt as part of their PhD theses.
(Meier 2013; Schmidt 2012).

We will follow Meier 2013, Chapters 7,8.
• Security protocol verification tool

• based on labeled multiset rewriting

• Symbolic model

• messages are not bitstrings but terms
• relations between terms are given by equational theories

• Dolev-Yao attacker

• cryptographic primitives are handled as black-boxes
• active attacker has complete control over the network
• access to a corrupt oracle
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Term Algebras and Cryptographic Messages I
Definition

A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts such that

1. For every s ∈ S the connected component C of s contains a top sort top(s)
satisfying ∀c ∈ C : c ≤ top(s).

2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have
f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)

S = {msg,

fresh, pub

}

,

fresh ≤ msg, pub ≤ msg

,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}
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Term Algebras and Cryptographic Messages II

Definition

Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)

Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))
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Equational Theories and Cryptographic Primitives

Definition

Let Σ be a order-sorted signature. A pair {s, t} of terms s, t ∈ TΣ(V) is called an
equation, we write s = t.
The equational theory defined by E is the smallest congruence relation =E containing
all instances of equations in E.

Example (Cryptographic primitives)

Given ΣPHS as before. We define

EPHS = {fst(⟨x, y⟩) = x, snd(⟨x, y⟩) = y, sdec(k, senc(k,m)) = m}
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Labeled Multiset Rewriting and Protocol Specification I

Definition

Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.
Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.
Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example

In our example from before:
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Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.

Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).

Example

Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}
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Traces and Security Properties

Given a multiset rewriting system R and a equational theory by E. This yields a
transition relation =⇒R,E modelling the application of rewriting rules to multisets of
facts.

tracesE(R) = {[A1,A2, . . . ,An] | ∃S1, . . . , Sn : ∅ A1=⇒R,E S1
A2=⇒R,E . . .

An=⇒R,E Sn}
∧ uniqueness condition for freshness}

Security properties can then be formulated as first-order formulas on traces, e.g.
secrecy properties:

∀I, x : K(x) ∧ Id(I, x) ⇒ Corrupt(I, x)
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Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.

• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.
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Overview of the Theoretical Part

Notion Model

Terms Cryptographic messages
Equational Theories Semantics of cryptographic primitives

Rules State transitions of protocol instances, Oracles
Action facts Protocol transcript

Rewriting Systems Protocol Specification, Means of the Attacker
Traces Parallel executions of the protocol

Trace Formulas Security properties (e.g. executability, secrecy, authenticity)
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Tamarin-Prover in Practice
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(Short) Demo ⌣
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Reference Implementation of IPSec
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Building Blocks for IPSec

• Random choices

3

• Cryptographic primitives

(3)
• Diffie-Hellman exponentiation

(built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)
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Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

functions: prf/1
rule use_prf:

let SKEYSEED = prf(<Ni, Nr, DH>)
in
[ State(Ni, Nr, DH) ] --> [ State(Ni, Nr, DH, SKEYSEED) ]
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(3)
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• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes (use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

rule use_aeenc:
let ct = senc(~secret, key_e)

tag = mac(ct, key_a)
hdr = < '120', ... >

in [ Fr(~secret), State(key_e, key_a) ] --> [ Out(<hdr, ct, tag>)]
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