
1/25

The Journey towards a Reference Implementation of IPSec
Automatic Security Analysis with Tamarin-Prover

Eike Stadtländer

July 12, 2018

2/25

Outline

Motivation

Tamarin-Prover
Overview
Multiset Rewriting

Tamarin-Prover in Practice

Reference Implementation of IPSec
Building Blocks
Finite State Machine
Status Quo

Lab-Goals Reflection

3/25

Motivation

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:

• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:

• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:

• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:

• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:

• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:
• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

4/25

Motivation
Modern proofs are error-prone, they become more complex and they are created faster
than they can be verified.

• Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9 (2011)

• Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017. arXiv:
1708.03486v2 [cs.CC]

• Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. . June 28, 2018
(recently updated: 602 pages)

Security of network protocols is critical:
• corporate espionage (Germany: 55bn. €/a, bitkom 2017)

The security proofs are not always trustworthy (Halevi 2005; Bellare and Rogaway
2004). Automatic security analysis aims to improve trustworthiness of security proofs.

http://arxiv.org/abs/1708.03486v2

5/25

Tamarin-Prover

6/25

Tamarin-Prover
Overview

• Developed by Simon Meier and Benedikt Schmidt as part of their PhD theses.
(Meier 2013; Schmidt 2012).

We will follow Meier 2013, Chapters 7,8.
• Security protocol verification tool

• based on labeled multiset rewriting

• Symbolic model

• messages are not bitstrings but terms
• relations between terms are given by equational theories

• Dolev-Yao attacker

• cryptographic primitives are handled as black-boxes
• active attacker has complete control over the network
• access to a corrupt oracle

6/25

Tamarin-Prover
Overview

• Developed by Simon Meier and Benedikt Schmidt as part of their PhD theses.
(Meier 2013; Schmidt 2012). We will follow Meier 2013, Chapters 7,8.

• Security protocol verification tool

• based on labeled multiset rewriting

• Symbolic model

• messages are not bitstrings but terms
• relations between terms are given by equational theories

• Dolev-Yao attacker

• cryptographic primitives are handled as black-boxes
• active attacker has complete control over the network
• access to a corrupt oracle

6/25

Tamarin-Prover
Overview

• Developed by Simon Meier and Benedikt Schmidt as part of their PhD theses.
(Meier 2013; Schmidt 2012). We will follow Meier 2013, Chapters 7,8.

• Security protocol verification tool
• based on labeled multiset rewriting

• Symbolic model

• messages are not bitstrings but terms
• relations between terms are given by equational theories

• Dolev-Yao attacker

• cryptographic primitives are handled as black-boxes
• active attacker has complete control over the network
• access to a corrupt oracle

6/25

Tamarin-Prover
Overview

• Developed by Simon Meier and Benedikt Schmidt as part of their PhD theses.
(Meier 2013; Schmidt 2012). We will follow Meier 2013, Chapters 7,8.

• Security protocol verification tool
• based on labeled multiset rewriting

• Symbolic model
• messages are not bitstrings but terms
• relations between terms are given by equational theories

• Dolev-Yao attacker

• cryptographic primitives are handled as black-boxes
• active attacker has complete control over the network
• access to a corrupt oracle

6/25

Tamarin-Prover
Overview

• Developed by Simon Meier and Benedikt Schmidt as part of their PhD theses.
(Meier 2013; Schmidt 2012). We will follow Meier 2013, Chapters 7,8.

• Security protocol verification tool
• based on labeled multiset rewriting

• Symbolic model
• messages are not bitstrings but terms
• relations between terms are given by equational theories

• Dolev-Yao attacker
• cryptographic primitives are handled as black-boxes
• active attacker has complete control over the network
• access to a corrupt oracle

7/25

Term Algebras and Cryptographic Messages I
Definition

A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts such that

1. For every s ∈ S the connected component C of s contains a top sort top(s)
satisfying ∀c ∈ C : c ≤ top(s).

2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have
f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)

S = {msg,

fresh, pub

}

,

fresh ≤ msg, pub ≤ msg

,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ)

where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts such that

1. For every s ∈ S the connected component C of s contains a top sort top(s)
satisfying ∀c ∈ C : c ≤ top(s).

2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have
f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)

S = {msg,

fresh, pub

}

,

fresh ≤ msg, pub ≤ msg

,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts

and Σ is a set of function symbols associated with the sorts such that
1. For every s ∈ S the connected component C of s contains a top sort top(s)

satisfying ∀c ∈ C : c ≤ top(s).
2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have

f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)

S = {msg,

fresh, pub

}

,

fresh ≤ msg, pub ≤ msg

,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts

and Σ is a set of function symbols associated with the sorts such that
1. For every s ∈ S the connected component C of s contains a top sort top(s)

satisfying ∀c ∈ C : c ≤ top(s).
2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have

f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg,

fresh, pub

},

fresh ≤ msg, pub ≤ msg

,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts

and Σ is a set of function symbols associated with the sorts such that
1. For every s ∈ S the connected component C of s contains a top sort top(s)

satisfying ∀c ∈ C : c ≤ top(s).
2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have

f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg, fresh, pub},

fresh ≤ msg, pub ≤ msg

,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts

and Σ is a set of function symbols associated with the sorts such that
1. For every s ∈ S the connected component C of s contains a top sort top(s)

satisfying ∀c ∈ C : c ≤ top(s).
2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have

f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg, fresh, pub}, fresh ≤ msg, pub ≤ msg,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts

such that
1. For every s ∈ S the connected component C of s contains a top sort top(s)

satisfying ∀c ∈ C : c ≤ top(s).
2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have

f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg, fresh, pub}, fresh ≤ msg, pub ≤ msg,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts

such that
1. For every s ∈ S the connected component C of s contains a top sort top(s)

satisfying ∀c ∈ C : c ≤ top(s).
2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have

f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg, fresh, pub}, fresh ≤ msg, pub ≤ msg,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts such that

1. For every s ∈ S the connected component C of s contains a top sort top(s)
satisfying ∀c ∈ C : c ≤ top(s).

2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have
f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg, fresh, pub}, fresh ≤ msg, pub ≤ msg,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

7/25

Term Algebras and Cryptographic Messages I
Definition
A order-sorted signature is a triple (S,≤,Σ) where (S,≤) is partially-ordered set of
sorts and Σ is a set of function symbols associated with the sorts such that

1. For every s ∈ S the connected component C of s contains a top sort top(s)
satisfying ∀c ∈ C : c ≤ top(s).

2. For every k-ary function symbol f : s1 × · · · × sk → s ∈ Σ, we also have
f : top(s1)× · · · × top(sk) → top(s) ∈ Σ.

Example (Cryptographic messages)
S = {msg, fresh, pub}, fresh ≤ msg, pub ≤ msg,

ΣPHS = {⟨·, ·⟩, fst(·), snd(·), h(·), senc(·, ·), sdec(·, ·)}

8/25

Term Algebras and Cryptographic Messages II

Definition

Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)

Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ).

For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)

Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs

where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)

Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.

Then given A ⊆
∪

s∈S Cs ∪
∪

s∈S Vs, TΣ(A) denotes the set of all well-sorted terms
constructed over Σ ∪ A.

Example (Cryptographic messages)

Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)

Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)
Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)
Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg,

fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)
Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩),

senc(m, k), sdec(k2, senc(k1,m))

8/25

Term Algebras and Cryptographic Messages II

Definition
Given a order-sorted signature Σ = (S,≤,Σ). For every sort s ∈ S we assume there are
countably infinite sets of variables Vs and constants Cs where Cs ∩ Vs = ∅ and
Vs ∩ Vt = ∅ = Cs ∩ Ct if s, t ∈ S, s ̸= t.
Then given A ⊆

∪
s∈S Cs ∪

∪
s∈S Vs, TΣ(A) denotes the set of all well-sorted terms

constructed over Σ ∪ A.

Example (Cryptographic messages)
Given ΣPHS = ({msg, fresh, pub},≤,ΣPHS) we have, for instance, the following
well-sorted terms

m ∈ Vmsg, fst(⟨m, n⟩), senc(m, k), sdec(k2, senc(k1,m))

9/25

Equational Theories and Cryptographic Primitives

Definition

Let Σ be a order-sorted signature. A pair {s, t} of terms s, t ∈ TΣ(V) is called an
equation, we write s = t.
The equational theory defined by E is the smallest congruence relation =E containing
all instances of equations in E.

Example (Cryptographic primitives)

Given ΣPHS as before. We define

EPHS = {fst(⟨x, y⟩) = x, snd(⟨x, y⟩) = y, sdec(k, senc(k,m)) = m}

9/25

Equational Theories and Cryptographic Primitives

Definition
Let Σ be a order-sorted signature. A pair {s, t} of terms s, t ∈ TΣ(V) is called an
equation, we write s = t.

The equational theory defined by E is the smallest congruence relation =E containing
all instances of equations in E.

Example (Cryptographic primitives)

Given ΣPHS as before. We define

EPHS = {fst(⟨x, y⟩) = x, snd(⟨x, y⟩) = y, sdec(k, senc(k,m)) = m}

9/25

Equational Theories and Cryptographic Primitives

Definition
Let Σ be a order-sorted signature. A pair {s, t} of terms s, t ∈ TΣ(V) is called an
equation, we write s = t.

The equational theory defined by E is the smallest congruence relation =E containing
all instances of equations in E.

Example (Cryptographic primitives)

Given ΣPHS as before. We define

EPHS = {fst(⟨x, y⟩) = x, snd(⟨x, y⟩) = y, sdec(k, senc(k,m)) = m}

9/25

Equational Theories and Cryptographic Primitives

Definition
Let Σ be a order-sorted signature. A pair {s, t} of terms s, t ∈ TΣ(V) is called an
equation, we write s = t.

The equational theory defined by E is the smallest congruence relation =E containing
all instances of equations in E.

Example (Cryptographic primitives)
Given ΣPHS as before. We define

EPHS = {fst(⟨x, y⟩) = x, snd(⟨x, y⟩) = y, sdec(k, senc(k,m)) = m}

9/25

Equational Theories and Cryptographic Primitives

Definition
Let Σ be a order-sorted signature. A pair {s, t} of terms s, t ∈ TΣ(V) is called an
equation, we write s = t.
The equational theory defined by E is the smallest congruence relation =E containing
all instances of equations in E.

Example (Cryptographic primitives)
Given ΣPHS as before. We define

EPHS = {fst(⟨x, y⟩) = x, snd(⟨x, y⟩) = y, sdec(k, senc(k,m)) = m}

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition

Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.
Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.
Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example

In our example from before:

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition
Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.

Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.
Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example

In our example from before:

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition
Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.

Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.

Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example

In our example from before:

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition
Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.

Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.

Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example
In our example from before: Secret(m, k)

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition
Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.

Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.

Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example
In our example from before: Secret(m, k)

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition
Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.

Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.

Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example
In our example from before: [Secret(m, k)] Encrypted(m) [Out(senc(k,m))]

10/25

Labeled Multiset Rewriting and Protocol Specification I

Definition
Let ΣFact be an unsorted signature partitioned into linear and persistent fact symbols.
Furthermore, assume there is a designated fact symbol Fr ∈ ΣFact modelling freshness.
Given a order-sorted term algebra T , we define the set of all facts by

F = {F(t1, . . . , tk) | t1, . . . , tk ∈ T ,F ∈ ΣFact, arity(F) = k}

A (labeled) multiset rewriting rule is a triple (p, a, c) of finite sequences p, a, c ∈ F∗,
written p a c.

Example
In our example from before: [Secret(m, k)] Encrypted(m) [Out(senc(k,m))]

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.

Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).

Example

Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).

Example

Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).

2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).

Example

Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.

3. No conclusion of a rule instance in R contains a fresh name which does not occur
in one of its premises (modulo E).

Example

Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example

Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example
Message deduction rules (means of the attacker):

MDΣ :=

{

Out(x) K(x), K(x) K(x) In(x),
Fr(x : fresh) K(x : fresh) K(x : pub)

}

∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example
Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x),

K(x) K(x) In(x),
Fr(x : fresh) K(x : fresh) K(x : pub)

}

∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example
Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}

∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example
Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh)

K(x : pub)

}

∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example
Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}

∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

11/25

Labeled Multiset Rewriting and Protocol Specification II
Definition
Let E define an equational theory =E. Let R be a finite set of multiset rewriting rules.
Then we call R a (labeled) multiset rewriting system if it satisfies the following
properties

1. No rule in R contains a fresh name (Vfresh).
2. No conclusion of a rule in R contains a Fr fact.
3. No conclusion of a rule instance in R contains a fresh name which does not occur

in one of its premises (modulo E).
Example
Message deduction rules (means of the attacker):

MDΣ :=

{
Out(x) K(x), K(x) K(x) In(x),

Fr(x : fresh) K(x : fresh) K(x : pub)

}
∪ {K(x1), . . . ,K(xk) K(f(x1, . . . , xk)) | f ∈ Σ, arity(f) = k}

12/25

Traces and Security Properties

Given a multiset rewriting system R and a equational theory by E. This yields a
transition relation =⇒R,E modelling the application of rewriting rules to multisets of
facts.

tracesE(R) = {[A1,A2, . . . ,An] | ∃S1, . . . , Sn : ∅ A1=⇒R,E S1
A2=⇒R,E . . .

An=⇒R,E Sn}
∧ uniqueness condition for freshness}

Security properties can then be formulated as first-order formulas on traces, e.g.
secrecy properties:

∀I, x : K(x) ∧ Id(I, x) ⇒ Corrupt(I, x)

12/25

Traces and Security Properties

Given a multiset rewriting system R and a equational theory by E. This yields a
transition relation =⇒R,E modelling the application of rewriting rules to multisets of
facts.

tracesE(R) = {[A1,A2, . . . ,An] | ∃S1, . . . , Sn : ∅ A1=⇒R,E S1
A2=⇒R,E . . .

An=⇒R,E Sn}

∧ uniqueness condition for freshness}

Security properties can then be formulated as first-order formulas on traces, e.g.
secrecy properties:

∀I, x : K(x) ∧ Id(I, x) ⇒ Corrupt(I, x)

12/25

Traces and Security Properties

Given a multiset rewriting system R and a equational theory by E. This yields a
transition relation =⇒R,E modelling the application of rewriting rules to multisets of
facts.

tracesE(R) = {[A1,A2, . . . ,An] | ∃S1, . . . , Sn : ∅ A1=⇒R,E S1
A2=⇒R,E . . .

An=⇒R,E Sn

}

∧ uniqueness condition for freshness}

Security properties can then be formulated as first-order formulas on traces, e.g.
secrecy properties:

∀I, x : K(x) ∧ Id(I, x) ⇒ Corrupt(I, x)

12/25

Traces and Security Properties

Given a multiset rewriting system R and a equational theory by E. This yields a
transition relation =⇒R,E modelling the application of rewriting rules to multisets of
facts.

tracesE(R) = {[A1,A2, . . . ,An] | ∃S1, . . . , Sn : ∅ A1=⇒R,E S1
A2=⇒R,E . . .

An=⇒R,E Sn

}

∧ uniqueness condition for freshness}

Security properties can then be formulated as first-order formulas on traces

, e.g.
secrecy properties:

∀I, x : K(x) ∧ Id(I, x) ⇒ Corrupt(I, x)

12/25

Traces and Security Properties

Given a multiset rewriting system R and a equational theory by E. This yields a
transition relation =⇒R,E modelling the application of rewriting rules to multisets of
facts.

tracesE(R) = {[A1,A2, . . . ,An] | ∃S1, . . . , Sn : ∅ A1=⇒R,E S1
A2=⇒R,E . . .

An=⇒R,E Sn

}

∧ uniqueness condition for freshness}

Security properties can then be formulated as first-order formulas on traces, e.g.
secrecy properties:

∀I, x : K(x) ∧ Id(I, x) ⇒ Corrupt(I, x)

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.

• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).

• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.

• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.
• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.

• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.
• Security protocol verification boils down to searching R,E-satisfying traces.

• Constraint systems are used to incrementally construct a satisfying trace by
solving constraints.

• The constraint reduction rules are a heuristic giving rise to a verification
algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.
• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.

• The constraint reduction rules are a heuristic giving rise to a verification
algorithm. When the algorithm terminates it arrived either

• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.
• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either
• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.

• The underlying satisfiability problem is undecidable, the solver does not always
terminate.

13/25

Theoretical Outlook
Let R be a multiset rewriting system (with conditions) and =E an equational theory.

• Trace formulas φ can be R,E-valid or R,E-satisfiable (or neither).
• Every R,E-validity claim can be converted into a R,E-satisfiability claim.

• φ is R,E-valid iff. ¬φ is not R,E-satisfiable.
• Security protocol verification boils down to searching R,E-satisfying traces.
• Constraint systems are used to incrementally construct a satisfying trace by

solving constraints.
• The constraint reduction rules are a heuristic giving rise to a verification

algorithm. When the algorithm terminates it arrived either
• at a trivially unsolvable constraint and the claim is falsified or
• at a constraint system for which a trivial solution can be easily found and the claim

is verified.
• The underlying satisfiability problem is undecidable, the solver does not always

terminate.

14/25

Overview of the Theoretical Part

Notion Model

Terms Cryptographic messages
Equational Theories Semantics of cryptographic primitives

Rules State transitions of protocol instances, Oracles
Action facts Protocol transcript

Rewriting Systems Protocol Specification, Means of the Attacker
Traces Parallel executions of the protocol

Trace Formulas Security properties (e.g. executability, secrecy, authenticity)

14/25

Overview of the Theoretical Part

Notion Model
Terms Cryptographic messages

Equational Theories Semantics of cryptographic primitives

Rules State transitions of protocol instances, Oracles
Action facts Protocol transcript

Rewriting Systems Protocol Specification, Means of the Attacker
Traces Parallel executions of the protocol

Trace Formulas Security properties (e.g. executability, secrecy, authenticity)

14/25

Overview of the Theoretical Part

Notion Model
Terms Cryptographic messages

Equational Theories Semantics of cryptographic primitives
Rules State transitions of protocol instances, Oracles

Action facts Protocol transcript

Rewriting Systems Protocol Specification, Means of the Attacker
Traces Parallel executions of the protocol

Trace Formulas Security properties (e.g. executability, secrecy, authenticity)

14/25

Overview of the Theoretical Part

Notion Model
Terms Cryptographic messages

Equational Theories Semantics of cryptographic primitives
Rules State transitions of protocol instances, Oracles

Action facts Protocol transcript
Rewriting Systems Protocol Specification, Means of the Attacker

Traces Parallel executions of the protocol
Trace Formulas Security properties (e.g. executability, secrecy, authenticity)

14/25

Overview of the Theoretical Part

Notion Model
Terms Cryptographic messages

Equational Theories Semantics of cryptographic primitives
Rules State transitions of protocol instances, Oracles

Action facts Protocol transcript
Rewriting Systems Protocol Specification, Means of the Attacker

Traces Parallel executions of the protocol

Trace Formulas Security properties (e.g. executability, secrecy, authenticity)

14/25

Overview of the Theoretical Part

Notion Model
Terms Cryptographic messages

Equational Theories Semantics of cryptographic primitives
Rules State transitions of protocol instances, Oracles

Action facts Protocol transcript
Rewriting Systems Protocol Specification, Means of the Attacker

Traces Parallel executions of the protocol
Trace Formulas Security properties (e.g. executability, secrecy, authenticity)

15/25

Tamarin-Prover in Practice

16/25

(Short) Demo ⌣

17/25

Reference Implementation of IPSec

18/25

Building Blocks for IPSec

• Random choices

3

• Cryptographic primitives

(3)
• Diffie-Hellman exponentiation

(built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices

3

• Cryptographic primitives

(3)
• Diffie-Hellman exponentiation

(built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices

3

• Cryptographic primitives

(3)
• Diffie-Hellman exponentiation

(built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

rule gen_nonce:
[Fr(~n)] --> [State(~n)]

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)
• Diffie-Hellman exponentiation

(built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

rule gen_nonce:
[Fr(~n)] --> [State(~n)]

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)
• Diffie-Hellman exponentiation

(built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation

(built-in)
• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

rule dh_calc:
let

gab = ga ^ ~b
in
[Fr(~b), In(<A, ga>)] --> [Out(<B, gab>)]

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)

• Pseudo-random functions

(function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

rule dh_calc:
let

gab = ga ^ ~b
in
[Fr(~b), In(<A, ga>)] --> [Out(<B, gab>)]

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions

(function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)

• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

functions: prf/1
rule use_prf:

let SKEYSEED = prf(<Ni, Nr, DH>)
in
[State(Ni, Nr, DH)] --> [State(Ni, Nr, DH, SKEYSEED)]

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)

• Authenticated encryption schemes

(use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes

(use EtA for now)
• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives

(3)

• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes (use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

rule use_aeenc:
let ct = senc(~secret, key_e)

tag = mac(ct, key_a)
hdr = < '120', ... >

in [Fr(~secret), State(key_e, key_a)] --> [Out(<hdr, ct, tag>)]

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives (3)
• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes (use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives (3)
• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes (use EtA for now)

• Certificates

(use identifier and signature(s) for now 3)

18/25

Building Blocks for IPSec

• Random choices 3

• Cryptographic primitives (3)
• Diffie-Hellman exponentiation (built-in)
• Pseudo-random functions (function symbols, no collisions)
• Signature schemes (cf. demo)
• Authenticated encryption schemes (use EtA for now)

• Certificates (use identifier and signature(s) for now 3)

19/25

Finite State Machine

Init Phase

∅

19/25

Finite State Machine
Init Phase

∅

19/25

Finite State Machine
Init Phase

∅

I1

init_send

19/25

Finite State Machine
Init Phase

∅

I1

init_send

R1

resp_accept

m1 = ⟨Hdr, SAi1, KEi, Ni⟩

19/25

Finite State Machine
Init Phase

∅

I1

init_send

R1 R2

resp_accept

resp_send

m1

19/25

Finite State Machine
Init Phase

∅

I1 I2

init_send

init_accept

R1 R2

resp_accept

resp_send

m1 m2 = ⟨Hdr, SAr1, KEr, Nr, CERTREQ⟩

19/25

Finite State Machine
Init Phase

∅

I1 I2 I3

init_send

init_accept init_keyderiv

R1 R2 R3

resp_accept

resp_send resp_keyderiv

m1 m2

19/25

Finite State Machine
Init Phase

∅

I1 I2 I3 . . .

init_send

init_accept init_keyderiv . . .

R1 R2 R3
. . .

resp_accept

resp_send resp_keyderiv . . .

m1 m2

20/25

Code Walkthrough ⌣

21/25

Lab-Goals Reflection

22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover

• mathematical foundation, in particular

⌣
• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories

• How is the language of Tamarin-Prover reflecting those notions?

⌣

• What are the limitations of Tamarin-Prover?



• Practical Application

• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover

• mathematical foundation, in particular

⌣
• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories

• How is the language of Tamarin-Prover reflecting those notions?

⌣

• What are the limitations of Tamarin-Prover?



• Practical Application

• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular

⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions?

⌣

• What are the limitations of Tamarin-Prover?



• Practical Application

• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular ⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions?

⌣

• What are the limitations of Tamarin-Prover?



• Practical Application

• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular ⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions? ⌣
• What are the limitations of Tamarin-Prover?



• Practical Application

• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular ⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions? ⌣
• What are the limitations of Tamarin-Prover? 

• Practical Application

• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular ⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions? ⌣
• What are the limitations of Tamarin-Prover? 

• Practical Application
• Implementing small toy examples to learn the language

⌣

• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular ⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions? ⌣
• What are the limitations of Tamarin-Prover? 

• Practical Application
• Implementing small toy examples to learn the language ⌣
• Working on (parts of) the IPSec protocol



22/25

Goals for the Lab - Revisited

• Theory of Tamarin-Prover
• mathematical foundation, in particular ⌣

• order-sorted term algebras
• equational theories
• operations: substitution, replacements, unification, matching, rewriting modulo

equational theories
• How is the language of Tamarin-Prover reflecting those notions? ⌣
• What are the limitations of Tamarin-Prover? 

• Practical Application
• Implementing small toy examples to learn the language ⌣
• Working on (parts of) the IPSec protocol 

23/25

References

References I
[bit17] bitkom, ed. Spionage, Sabotage, Datendiebstahl: Deutscher Wirtschaft

entsteht jährlich ein Schaden von 55 Milliarden Euro. July 21, 2017. URL:
https://www.bitkom.org/Presse/Presseinformation/Spionage-
Sabotage-Datendiebstahl-Deutscher-Wirtschaft-entsteht-
jaehrlich-ein-Schaden-von-55-Milliarden-Euro.html (visited on
06/30/2018).

[Blu17] Norbert Blum. A Solution of the P versus NP Problem. Aug. 11, 2017.
arXiv: 1708.03486v2 [cs.CC].

[BR04] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and
the Security of Triple Encryption. Cryptology ePrint Archive, Report
2004/331. 2004. URL: https://eprint.iacr.org/2004/331 (visited on
05/11/2018).

24/25

https://www.bitkom.org/Presse/Presseinformation/Spionage-Sabotage-Datendiebstahl-Deutscher-Wirtschaft-entsteht-jaehrlich-ein-Schaden-von-55-Milliarden-Euro.html
https://www.bitkom.org/Presse/Presseinformation/Spionage-Sabotage-Datendiebstahl-Deutscher-Wirtschaft-entsteht-jaehrlich-ein-Schaden-von-55-Milliarden-Euro.html
https://www.bitkom.org/Presse/Presseinformation/Spionage-Sabotage-Datendiebstahl-Deutscher-Wirtschaft-entsteht-jaehrlich-ein-Schaden-von-55-Milliarden-Euro.html
http://arxiv.org/abs/1708.03486v2
https://eprint.iacr.org/2004/331

References II
[Hal05] Shai Halevi. A plausible approach to computer-aided cryptographic proofs.

Cryptology ePrint Archive, Report 2005/181. 2005. URL:
https://eprint.iacr.org/2005/181 (visited on 05/11/2018).

[Mei13] Simon Meier. “Advancing automated security protocol verification”.
PhD thesis. ETH Zürich, 2013. DOI: 10.3929/ethz-a-009790675.

[Moc18] Sinichi Mochizuki. Inter-universal Teichmüller Theory I-IV. June 28, 2018.
[Opf11] Gerhard Opfer. “An Analytic Approach to the Collatz 3n+1 Problem”. In:

Hamburger Beiträge zur Angewandten Mathematik 9 (2011).
[Sch12] Benedikt Schmidt. “Formal analysis of key exchange protocols and physical

protocols”. PhD thesis. ETH Zürich, 2012. DOI:
10.3929/ethz-a-009898924.

Thank you for your attention!
25/25

https://eprint.iacr.org/2005/181
http://dx.doi.org/10.3929/ethz-a-009790675
http://dx.doi.org/10.3929/ethz-a-009898924

	Motivation
	Tamarin-Prover
	Overview
	Multiset Rewriting

	Tamarin-Prover in Practice
	Reference Implementation of IPSec
	Building Blocks
	Finite State Machine
	Status Quo

	Lab-Goals Reflection

