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1 Introduction

Mathematical proofs are difficult to verify by a human and even those verifications are error prone. This
issue is everlasting and problematic in the field of cryptography. For this reason automatic provers and
computer-aided toolsets are on the rise to achieve verification of proofs. In a project called miTLS [4]
EasyCrypt was used to show that the TLS Handshake is secure [1]. We want to achieve something similar
for IPsec. The first step, understanding EasyCrypt and implementing a small example that can be used,
is presented in this report. We will go through the cryptographic language of games, similar to the one
used by Katz and Lindell (2016) [3], and transfer this into a computer-aided toolset, called EasyCrypt.

Chapter 2 contains the games and schemes in the cryptographic-language that are later on implemented
in EasyCrypt.
Parts of the Game Hopping Lemma are introduced together with the implemented gamehop in chapter 3.
Chapter 4 provides a short overview of the most basic things one needs to know to understand EasyCrypt
and how it works.
In chapter 5 the full implementation is explained stepwise. An example how the Proof-Engine of Easy-
Crypt works can be seen at section 5.3.1 with a small overview of the used tactics.
Last there is a quick recap in chapter 6 for explaining pros and cons of using EasyCrypt.
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2 Preliminaries

Before the Game Hopping Lemma can be introduced and applied, a few definitions are needed:
The advantage of an adversary A playing a game G is defined as

advG(A) = |prob(A wins G)− prob(guess(G))|

where guess(G) is just a random guess to try to win G. From this point onward every game is assumed
to have a random guessing chance of 1/2.
The advantage of a game G is defined as the maximum advantage over all probabilistic polynomial time
(short ppt) adversaries that play G. If a game G has advantage 0, this is called null-game or guessing
game.
Let K be the space of the keys, M be the space of the messages and C the space of the ciphertexts.
An encryption scheme is indistinguishable under chosen message attacks (IND-CPA secure),
if every probabilistic polynomial time attacker has at most neglibile (meaning smaller than any inverse
polynomial) advantage in winning the following game:

Game: IND-CPA
Parameters: encryption scheme

1. Prepare a key k ∈ K.
2. Uniformly random pick hidden bit hLOR ∈ {0, 1}.
3. Prepare encryption oracle OEnc.

When called with m ∈M the oracle returns c← Enck(m).
4. Prepare a one-time oracle OLOR.

When called with m0,m1 ∈M the oracle returns c← Enck(mh).
5. Call the adversary with input (OEnc,OLOR) and await guess h′LOR ∈ {0, 1}.
6. If hLOR = h′LOR then return ACCEPT else return REJECT .

The implementation in EasyCrypt is used to show that the ElGamal encryption scheme is IND-CPA
secure.

The ElGamal encryption scheme is defined with:

Encryption Scheme: ElGamal
Parameters: a group G, an element g ∈ G of order p.

KeyGen of input κ ∈ K:
1. Uniformly random pick x ∈ {0, . . . , p}, this is the secret key.
2. Save gx as the public key.

Encryption of input m ∈M:
1. Uniformly random pick y ∈ {0, . . . , p}.
2. Output c = (gy, gx∗y ∗m).

Decryption of input c ∈ C:
1. Read c as the tuple (c0, c1).
2. Compute m = c−x

0 ∗ c1.
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To show the security property of ElGamal, one has to assume that the Decisional Diffie-Hellman problem
is not solvable in polynomial time. This is equivalent to having at most negligible advantage for the
following game:

Game: DDH
Parameters: a group G, an element g ∈ G of order p.

1. Uniformly random pick three integers x, y, z1 ∈ {0, . . . , p}.
Compute z0 = x ∗ y.

2. Uniformly random pick hidden bit hDDH ∈ {0, 1}.
Define z = zhDDH

.
3. Call the adversary with input (gx, gy, gz) and await guess h′DDH ∈ {0, 1}.
4. If hDDH = h′DDH then return ACCEPT else return REJECT .

For simplicity’s sake, the game IND-CPA with ElGamal as the encryption scheme will combined into one
game:

Game: CPAreal
Parameters: a group G, an element g ∈ G of order p.

1. Uniformly random pick x ∈ {0, . . . , p}, this is the secret key.
2. Save gx as the public key.
3. Uniformly random pick hidden bit hLOR ∈ {0, 1}.
4. Prepare encryption oracle OEnc.

When called with m ∈ M the oracle uniformly random picks y ∈ {0, . . . , p} and returns c =
(gy, g(x∗y) ∗m).

5. Prepare a one-time oracle OLOR.
When called with m0,m1 ∈ M the oracle uniformly random picks y ∈ {0, . . . , p} and returns
c = (gy, g(x∗y) ∗mh).

6. Call the adversary with input (OEnc,OLOR) and await guess h′LOR ∈ {0, 1}.
7. If hLOR = h′LOR then return ACCEPT else return REJECT .

The following game is needed later on in the Game Hopping Lemma. It is the same as CPAreal besides
the one-time oracle, which differs in the created ciphertext. Instead of gx∗y ∗mh as the output gz ∗mh is
used, where z is randomly generated.

Game: CPArandom
Parameters: a group G, an element g ∈ G of order p.

1. Uniformly random pick x ∈ {0, . . . , p}, this is the secret key.
2. Save gx as the public key.
3. Uniformly random pick hidden bit hLOR ∈ {0, 1}.
4. Prepare encryption oracle OEnc.

When called with m ∈ M the oracle uniformly random picks y ∈ {0, . . . , p} and returns c =
(gy, g(x∗y) ∗m).

5. Prepare a one-time oracle OLOR.
When called with m0,m1 ∈ M the oracle uniformly random picks y, z ∈ {0, . . . , p} and returns
c = (gy, gz ∗mh).

6. Call the adversary with input (OEnc,OLOR) and await guess h′LOR ∈ {0, 1}.
7. If hLOR = h′LOR then return ACCEPT else return REJECT .

Every notation and game is defined, thus the Game Hopping Lemma can be introduced.
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3 Gamehopping Application

Game Hopping Lemma - shortened version
Let G0 and G1 be two games which call the same adversary A and D a distinguisher that plays another
game called G, where G hides a uniformly random bit hG ∈ {0, 1} from D. Note that D(A) means the
distinguisher D uses adversary A to play the game G. The Game Hopping Lemma states that if

A wins G0 iff D(A) wins G given hG = 0

and
A wins G1 iff D(A) loses G given hG = 1

are true, then
prob(A wins G0)− prob(A wins G1) ≤ 2 ∗ advG(D(A))

holds.
As another perspective think of the game G being a bridge between G0 and G1 with D as the support of
the bridge. If hG is 0, the distinguisher can make the game G look like G0 for the adversary A. Same
holds for hg = 1 and G1. The lemma is used for an analysis of the difference between the left and right
side of the bridge.

Assume now that G1 is a guessing game. Then the Game Hopping Lemma states that the advantage for
winning G0 is at most two times the advantage for playing G. This helps by analyzing and understanding
the game G0 with the help of game G.
In the case of the implementation, G is the game DDH, G0 is CPAreal and G1 is CPArandom. There-
fore by showing that CPArandom is a null-game, it results in ElGamal encryption being IND-CPA secure
if the game DDH has at most negligible advantage. The used distinguisher is defined in the following way:

Distinguisher D
Parameters: a group G, an element g ∈ G of order p.
Input: gx, gy, gz from DDH game.

1. Uniformly random pick hidden bit hLOR ∈ {0, 1}.
2. Prepare encryption oracle OEnc.

When called with m ∈ M the oracle uniformly random picks t ∈ {0, . . . , p} and returns c =
(gt, (gx)t ∗m).

3. Prepare a one-time oracle OLOR.
When called with m0,m1 ∈M the oracle returns c = (gy, gz ∗mhLOR

).
4. Call the adversary A with input (OEnc,OLOR) and await guess h′LOR ∈ {0, 1}.
5. If hLOR = h′LOR return 0 (REAL), else return 1 (RANDOM).

Note that the distinguisher cannot read the variables x, y and z which are generated by the game DDH.
In the encryption oracle only the input gx is used, while in the test oracle gy and gz are used, where z
can be either x ∗ y or random.
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Apply the Game Hopping Lemma to this scenario. Before doing so one has to show that the precondition
holds, meaning that the following two sides have to be true.
Left side:

A wins CPAreal iff D(A) wins DDH given hDDH = 0

Right side:
A wins CPArandom iff D(A) loses DDH given hDDH = 1

The left and right side hold respectively by looking at the case for hDDH = 0 and hDDH = 1. As a small
sketch: if the hidden bit is 0 the distinguisher generates the test oracle with z = x ∗ y, which makes
everything adversary A can see look like the game CPAreal. If it is 1, z has to be random, hence being
same as the game CPArandom.

Thus
prob(A wins CPAreal )− prob(A wins CPArandom ) ≤ 2 ∗ advDDH(D(A))

holds.

Proving that prob(A wins CPArandom ) = 1/2 for every ppt A can be done by checking that the ciphertext
generated by the test oracle (gy, gz ∗mh) has the same distribution over C as (gy, gt) for some uniformly
random t ∈ {0, . . . , p}. This means that the adversary gains no knowledge from this call, which means he
has no information about the hidden bit, hence guessing randomly is the best he can do.
Considering the definition of advantage for A playing CPAreal:

advCPAreal(A) =
∣∣∣∣prob(A wins CPAreal )− 1

2

∣∣∣∣ ≤ 2 ∗ advDDH(D(A))

Since CPAreal is just the combination of the game IND-CPA with the ElGamal encryption scheme, this
result is the same as:
The ElGamal encryption scheme is IND-CPA secure under the assumption that the Decisional Diffie-
Hellman problem is hard (meaning every probabilistic polynomial time adversary playing DDH game has
at most negligible advantage).

Another notation and game that is interesting is the LOR-CPA game. This is similar to IND-CPA,
where the encryption oracle is removed and the test oracle is not a one-time oracle anymore but can be
called as many times as the adversary wants to. In the beginning the idea was to implement the proof
that ElGamal is IND-LOR secure, which resulted in a problem during the proof. One can show that there
exists an equality between LOR-CPA and IND-CPA. This equality can then be used for writing a proof
for ElGamal being LOR-CPA secure. To keep the implementation simple IND-CPA was chosen instead
of LOR-CPA.

5



4 Simple introduction to EasyCrypt

EasyCrypt is a computer-aided toolset for cryptographic proofs. One can find more details about Easy-
crypt at “https://www.easycrypt.info/” [2].

In EasyCrypt a lot of termonologies are needed. The following description is just a shortened explanation
of the used language. If one is interested in the correct and complete version, please check the reference
manual that can be found in the link given above.

A type can be understood as a set or theoretical construct which at first holds no specification. With
additional statements one can refine a type, for example as a group. For every type (set) t one can also call
the (probability) distribution over t with t distr . This way one can formulate an uniform distribution
for the key generation.

The term op is used for the definition of expressions and operations. If one wants to be able to call the
value 0 of type int with the name “x0” one would write op x0 : int = 0 . This operator may be used
from this point onwards in new definitions. The definition of the function f(x, y) = x for integers can be
written as op f (x : int) (y : int) = x .
To pick an element a of a set s with respect to a distribution the operation op pick_s : s distr is
needed. For picking it now a <$ pick_s has to be called.

A module consists of typed variables ( var ) and procedures ( proc ). Each procedure has an output
or return value (where type unit is used for the fixed return of empty element) and can have input
parameters. They can be thought of similar to functions in C/C++, where the whole module would be
similar to a class. The variables defined inside a module but outside a procedure are called global and can
be used by every module. If the return value of a procedure main() shall be stored inside the variable
a (where a is of same type as the return value of the procedure), one has to use the <@ operator, i.e. a
<@ main() (the @-symbol is only used for procedure assignments).
Example for a procedure that outputs a randomly generated boolean ( {0,1} is predefined and returns
uniformly a boolean):

module Coinflip = {
proc main() : bool = {

var coin;
coin <$ {0,1};
return coin;

}
}.

For a module a module type can be defined. It only consists of declarations of procedures. For a module
to be of a specific module type it has to have every procedure defined by its type with the same types as
in- and output.

The probability expression Pr[M.p(e1, . . . , en) @ &m : φ] for a procedure p of moduleM that has inputs
e1 to en is just a statement about the probability that the formula φ holds. The variable &m is a memory
variable, which is needed to refer to global variables and modules. Inside the statement φ one can use the
term res , which stands for the output of the procedure M.p.

6



As example consider the probability expression that in the above module Coinflip the procedure returns
“true” with probability 1/2 (note that %r typecasts to a rational number):

Pr[Coinflip.main() @ &m : res = true] = 1%r/2%r.

An axiom is a formula that is trusted by EasyCrypt, while a lemma is a formula that has to be proven
to be true. Such a proof starts with proof and has to end with qed to declare where it is done. The
proof engine works with goal lists. A goal consists of a context, which contains all variables, assumptions
and information about those, and a conclusion, which is a single formula with the same constraints as
the assumption formulas. If every goal of the goal list is solved, the whole lemma is proven. To solve
one goal tactics are used. They are predefined in EasyCrypt and apply logical transformations to the
conclusion and context. The transformations can also produce more smaller goals that need to be solved
individually. Since the list of those tactics is quite large, checking the reference manual is recommended
for further insight.
In the next chapter there are several proofs written in EasyCrypt, where only one is explained thoroughly
with the corresponding tactics. To understand the way the other proofs are influencing the goals in detail
one should use Proof-General and run through the code in interactive mode.
The definition of a procedure p being lossless means that p will terminate with probability 1. In the
case of an adversary or oracle one can assume that to be always true, because if that would not be true,
then the game would not be finished.

Adversaries are modeled by abstract modules. Those are modules where the code is unknown and Easy-
Crypt quantifies over adversaries. An abstract module that has to be of module type Adversary_ is
defined by declare module Adv : Adversary_ . Another way to use an abstract module for a single
formula is by calling forall (Adv <: Adversary_) . Nonetheless the adversaries have to be controlled
in some way. Two considerations need to be done: first the procedures that are allowed to call, second
the global variables that are allowed to manipulate.

1. The adversary has only access to those procedures that are given to him directly, which are stated
in the module type. For a procedure p of module M to be allowed to be called by an adversary’s
procedure pa, the definition of pa has to have {M.p} written after the output type of pa. This then
states that if pa is called the adversary can use the procedure M.p for doing whatever he wants.

2. The set of all global variables of a module M is the union of all selfdeclared global variables and all
other global variables that can be read or written by a series of procedure calls, beginning with a
call of a procedure p which M has access to.
This means for an adversary, that by giving him access to an oracle, he gets access to the used secret
variables (like secret key or hidden bit). Here having access means that he cannot only read, but
even write it. Because of this sometimes one wants an adversary to not have access to the stored
public key, thus giving him a copy of that instead.
To make sure that an adversary is not able to access the global variables ofM there are two possible
ways. During the declaration: declare module Adv : Adversary_{M} and in a formula, where φ
is a statement for the formula: forall (Adv <: Adversary_{M}, φ
Both have the module M written inbetween braces directly after the module type as some kind of
assignment. The interpreation means that the global variables of Adv and the global variables of
M have to be disjoint. By doing that one can control the global variables given to the adversary.
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5 Implementation

To help differentiate between variables, types, modules and module types note that:

1. Types and module types are named with _ as last letter.

2. Variables are starting with a lower case letter.

3. Modules and module types start with a capital letter.

5.1 Premise
All definitions done in chapter 2 need to be implemented.

To specify which game is played, instead of using booleans for every game the following types are used:

type DDHhidden_ = [ REAL | RANDOM ].
type LORhidden_ = [ LEFT | REAL ].
type gamedecision_ = [ ACCEPT | REJECT ].

The games DDH, CPAreal and CPArandom pick a hidden bit uniformly random, which is implemented
with the corresponding distribution-operations:

(* For DDHhidden_ *)
op distr_DDHhidden : DDHhidden_ distr.
axiom distr_DDHhidden_1E : forall (s : DDHhidden_), mu1 distr_DDHhidden s = (1%r/2%r).
axiom distr_DDHhidden_ll : is_lossless distr_DDHhidden.
lemma distr_DDHhidden_uni: is_uniform distr_DDHhidden.

proof. by move=> ??; rewrite !distr_DDHhidden_1E. qed.
(* For LORhidden_ *)
op distr_LORhidden : LORhidden_ distr.
axiom distr_LORhidden_1E : forall (s : LORhidden_), mu1 distr_LORhidden s = (1%r/2%r).
axiom distr_LORhidden_ll : is_lossless distr_LORhidden.
lemma distr_LORhidden_uni: is_uniform distr_LORhidden.

proof. by move=> ??; rewrite !distr_LORhidden_1E. qed.

Parameters of ElGamal encryption scheme consist of a group G with group element g of order p. For the
group the predefined version from EasyCrypt is used, where G is a cyclic group, g is its generator and
the set of all integers from 0 to p is a type called t. Meaning the space of the public and secret keys, the
plaintext and the ciphertext are the following types:

type pk_ = group.
type sk_ = t.
type ptxt_ = group.
type ctxt_ = group * group.

Next the templates for the distinguisher (or adversary for playing game DDH) and adversary playing
games CPAreal and CPArandomneed to be defined.
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The module type for the distinguisher contains only one procedure, which gets gx, gy and gz as input and
has to return a hidden bit for the game DDH.

module type DDH_Adversary_ = {
proc solve(gx gy gz : group) : DDHhidden_

}.

The module Oracle will contain everything that has to be stored long term, the test oracle (called enc_lor
) and the encryption oracle (called enc ). Furtheron there are two procedures, one for having a single
call to initialize the oracle and one called public_knowledge, which is used to give the adversary all the
information that is publicly known.

module type Oracle_ = {
proc init(pk : pk_, gy gz : group) : unit
proc public_knowledge() : pk_
proc enc_lor(m0 m1 : ptxt_) : ctxt_
proc enc(m : ptxt_) : ctxt_

}.

The module type for the adversary playing the IND-CPA games contains two procedures, even though in
the games he will only be called once. The reason for this is the one-time test oracle. To make sure the
adversary gets to call enc_lor only once there are two possible ways to implement this. One is by calling
the adversary itself once and handling it the way as done in this implementation, or by allowing to call
enc_lor infinitly many times and having a counter variable for control purpose. This second approach
leads to another problem, since a procedure always has to return the same type. Therefore either there
has to be some workaround or the procedure enc_lor has to return some kind of ciphertext, which could
be done by a uniformly random distribution over the ciphertextspace.
The procedures choose (gets no input and has to return two messages) and guess (gets a ciphertext as
input and has to return the hidden bit for a IND-CPA game) are called in this order, where both have
access to the procedures public_knowledge and enc from the oracle that is used as input. The adversary
therefore has no access to the procedures init or enc_lor.

module type CPA_Adversary_ (Or : Oracle_) = {
proc choose() : ptxt_ * ptxt_ {Or.public_knowledge Or.enc}
proc guess(c : ctxt_) : LORhidden_ {Or.public_knowledge Or.enc}

}.

That contains all the module types. In the following the chapter the modules are explained.
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5.2 Games
As the first module the game DDH is implemented, second the Oracle, followed by the games CPAreal
and CPArandom.

Implementation of game DDH:
Considering how the Game Hopping Lemma is applied, the DDH game needs only to be looked at with
fixed hidden bit. Therefore the procedure main will expect a hidden bit already as input and is not chosen
randomly. Everything else is just like one would expect from the game definition.

module DDH_Game_input (A : DDH_Adversary_) = {
(* expect hidden bit as input *)
proc main(ddh_h : DDHhidden_) : gamedecision_ = {

var ddh_h’, x, y, z0, z1, gamedecision;
(* The values which are the exponents for DDH *)
x <$ FDistr.dt;
y <$ FDistr.dt;
z0 = x * y;
z1 <$ FDistr.dt;

(* If we are in the REAL-case, we use z0 *)
if (ddh_h = REAL) {

ddh_h’ <@ A.solve(g ˆ x, g ˆ y, g ˆ z0);}
else {

ddh_h’ <@ A.solve(g ˆ x, g ˆ y, g ˆ z1);}

(* If the adversary gave same output, the game ACCEPTS *)
if (ddh_h = ddh_h’) {

gamedecision = ACCEPT;}
else {

gamedecision = REJECT;}

return gamedecision;
}

}.
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Implementation of the oracles OEnc and OLOR:
As stated at the module type Oracle_, this module has four procedures and stores every long term value
it has to know. The hidden bit used by the distinguisher and the games CPAreal and CPArandom are
generated inside the procedure init. This is no different than generating it themselves and then storing it
inside the module Oracle.

module Oracle : Oracle_ = {
(* global variables *)
var lor_h : LORhidden_
var pk : pk_
var gy : group
var gz : group

proc init(pkI : pk_, gyI gzI : group) : unit = {
pk = pkI;
gy = gyI;
gz = gzI;
lor_h <$ distr_LORhidden;

}

proc public_knowledge() : pk_ = {
return pk;

}

proc enc_lor(m0 m1 : ptxt_) : ctxt_ = {
var c;

if (lor_h = LEFT) {
c = (gy, (gz) * m0);}

else {
c = (gy, (gz) * m1);}

return c;
}

proc enc(m : ptxt_) : ctxt_ = {
var t;
t <$ FDistr.dt;
return (g ˆ t, (pk ˆ t) * m);

}
}.

Recommended way of implementation for bigger projects is to split the procedures into two modules. One
for storing purpose (would mean having procedure init) and another containing all oracles. In both the
procedure public_knowledge could be written. Then it is possible for every module to have Oracle as
input instead of calling it strictly. The only downside is in the proof section where more control over the
adversary has to be stated.
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Implementation of game CPAreal :
Calling the adversary first with procedure choose and then procedure guess is due to the one-time oracle
OLOR. Since he is able to call the encryption oracle OEnc at every time, even before choosing messages
m0 and m1 (or more specifically during the procedure choose), this is the same as giving him OLOR.
Typically one should expect a loss in security by restricting an adversary, though this can be neglected
here.

module CPA_Game_real (Adv : CPA_Adversary_) = {
module A = Adv(Oracle)

proc main() : gamedecision_ = {
var lor_h’ : LORhidden_;
var gamedecision : gamedecision_;
var x, y, z;
var m0, m1, c;

(* Sample and define everything we need for the encryption. *)
x <$ FDistr.dt;
y <$ FDistr.dt;
z = x * y;

(* Initalize the oracle *)
Oracle.init(g ˆ x, g ˆ y, g ˆ z);

(* Call the adversary *)
(m0, m1) <@ A.choose(g ˆ x);
c = Oracle.enc_lor(m0, m1);
lor_h’ <@ A.guess(c);

(* If the adversary guessed correctly, he will win the game, else he loses. *)
if (Oracle.lor_h = lor_h’){
gamedecision = ACCEPT;}
else {
gamedecision = REJECT;}

return gamedecision;
}

}.
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Implementation of game CPArandom :
Note that the only thing changed from module CPA_Game_random is the variable z, which is now
random. This is exactly as defined by the game notation.

module CPA_Game_random (Adv : CPA_Adversary_) = {
module A = Adv(Oracle)

proc main() : gamedecision_ = {
var lor_h’ : LORhidden_;
var gamedecision : gamedecision_;
var x, y, z;
var m0, m1, c;

x <$ FDistr.dt;
y <$ FDistr.dt;
z <$ FDistr.dt; (* this is changed *)

Oracle.init(g ˆ x, g ˆ y, g ˆ z);

(m0, m1) <@ A.choose(g ˆ x);
c = Oracle.enc_lor(m0, m1);
lor_h’ <@ A.guess(c);

if (Oracle.lor_h = lor_h’){
gamedecision = ACCEPT;}
else {
gamedecision = REJECT;}

return gamedecision;
}

}.
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Implementation of the distinguisher D:
The module Distinguisher gets (gx, gy, gz) as input from the game DDH. From this information he gener-
ates everything needed to call an adversary for the game IND-CPA. The output then is used for stating
if z is real or random.

module Distinguisher (Adv : CPA_Adversary_) : DDH_Adversary_ = {
module A = Adv(Oracle)

(* Input is from the DDH-Game. *)
proc solve(gx : group, gy : group, gz : group) : DDHhidden_ = {

var lor_h’ : LORhidden_;
var ddh_h’ : DDHhidden_;
var m0, m1, c;

(* Initalize the oracle such that we can let the adversary play the CPA-Game.
*)
Oracle.init(gx,gy,gz);

(* Call the adversary as distinguisher *)
(m0, m1) <@ A.choose(gx);
c = Oracle.enc_lor(m0, m1);
lor_h’ <@ A.guess(c);

(* Use the adversaries output *)
if (Oracle.lor_h = lor_h’){
ddh_h’ = REAL;}
else {
ddh_h’ = RANDOM;}

(* Return guess for the game DDH. *)
return ddh_h’;

}
}.
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5.3 Proofs
Finding a proof just by using tactics from EasyCrypt can be quite bothersome. Especially if one is new
to this language. To make it simpler, one can use more modules which are closer to each other. For
example instead of the module DDH_Game_input calling the distinguisher another two modules called
DDH0 and DDH1 were created. This way the problems that arised were easier to find and fix, therefore
recommending that approach.

The adversary is not defined yet, just its module type. To be able to call him and define that he gets no
access to the module Oracle, the following is needed:

declare module Adv : CPA_Adversary_{Oracle}.

Because Adv only has access to the module Oracle, the only global variables he can read/write are either
defined by Oracle or used in one of its procedures. Every procedure defined in Oracle computes with its
own known variables and does not call any other procedure. Therefore Adv has no global variables, just
the information that was given to him beforehand.
To check that this really is the case, one can remove the braces with its context and check the proof that is
given below. Then there would be an error message stating that variables are writeable by the adversary
and restrictions are required.

For applying Game Hopping Lemma the left side

A wins CPAreal iff D(A) wins DDH given hDDH = 0

is needed to be shown to be true. This is done the following way (explanation for this proof is below):

lemma left_side &m:
Pr[DDH_Game_input(Distinguisher(Adv)).main(REAL) @ &m : (res = ACCEPT)] =
Pr[CPA_Game_real(Adv).main() @ &m : (res = ACCEPT)].

proof.
byequiv => //.
proc.
rcondt{1} 5.
by auto.
inline*.
swap{1} 4 19.
rnd{1}.
wp; simplify.
call(_: ={pk, gy, gz, lor_h}(Oracle, Oracle)); try sim.
auto.
call(_: ={pk, gy, gz, lor_h}(Oracle, Oracle)); try sim.
auto.
simplify.
progress; apply dt_ll.

qed.

In the next section the tactics used in the proof above are explained and shown in the interactive mode
of EasyCrypt via ProofGeneral.
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5.3.1 Goal-List and Tactics
The goal from the lemma itself looks like:

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pr[DDH_Game_input(Distinguisher(Adv)).main(REAL) @ &m : res = ACCEPT] =
Pr[CPA_Game_real(Adv).main() @ &m : res = ACCEPT]

With the tactic byequiv the probability expression is transformed into an equal equality expression.
The addition => // means that for every goal created by this the tactic trivial is applied, which
really just checks if the goal can be solved trivial. In this case byequiv would create 3 goals. Two of
them are solved by the tactic trivial , therefore just one is created.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

DDH_Game_input(Distinguisher(Adv)).main ˜ CPA_Game_real(Adv).main

post = ={res}
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By applying proc the equality will now be presented by the corresponding procedures. The equality has
to be shown (stated in the post condition) by showing that both sides have the same output. By writing
{1} for the left side and {2} for the right side one can distinguish if a variable or tactic is called for one
side.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt (1--) x <$ dt
y <$ dt (2--) y <$ dt
z0 <- x * y (3--) z <- x * y
z1 <$ dt (4--) Oracle.init(g ˆ x, g ˆ y, g ˆ z)
if (ddh_h = REAL) { (5--) (m0, m1) <@

( -) CPA_Game_real(Adv).A.choose(g ˆ x)
ddh_h’ <@ (5.1)

Distinguisher(Adv).solve(g ˆ x, ( )
g ˆ y, g ˆ z0) ( )

) else { (5--)
ddh_h’ <@ (5?1)

Distinguisher(Adv).solve(g ˆ x, ( )
g ˆ y, g ˆ z1) ( )

} (5--)
if (ddh_h = ddh_h’) { (6--) c <@ Oracle.enc_lor(m0, m1)
gamedecision <- ACCEPT (6.1)

) else { (6--)
gamedecision <- REJECT (6?1)
} (6--)

(7--) lor_h’ <@ CPA_Game_real(Adv).A.guess(c)
(8--) if (Oracle.lor_h = lor_h’) {
(8.1) gamedecision <- ACCEPT
(8--) else {
(8?1) gamedecision <- REJECT
(8--)

post = ={gamedecision}
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Using rcondt makes the current goal with an if statement into two goals. One where the if statement
(here in line 5 on the left side) has to be shown to be true and the other goal is the one from befure where
the statement is assumed to be true. The newly generated one looks like this:

Current goal (remaining: 2)

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
forall &m0,
hoare[ x <$ $dt; ...; z1 <$ $dt :

(glob Adv){m0} = (glob Adv){m} /\
ddh_h = REAL /\ (glob Adv) = (glob Adv){m} ==> ddh_h = REAL]

If a tactic starts with by this means that the current goal has to be closed with the following tactic, else
an error would occur. The tactic auto tries a few tactics itself, for example trivial and simplify
(is explained in the step it is used). Since this also closes the current goal, the only goal one can see at
this ponit is the other goal that was generated by rcondt .

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt (1--) x <$ dt
y <$ dt (2--) y <$ dt
z0 <- x * y (3--) z <- x * y
z1 <$ dt (4--) Oracle.init(g ˆ x, g ˆ y, g ˆ z)
ddh_h’ <@ (5--) (m0, m1) <@
Distinguisher(Adv).solve(g ˆ x, ( -) CPA_Game_real(Adv).A.choose(g ˆ x)
g ˆ y, g ˆ z0) ( -)

if (ddh_h = ddh_h’) { (6--) c <@ Oracle.enc_lor(m0, m1)
gamedecision <- ACCEPT (6.1)

) else { (6--)
gamedecision <- REJECT (6?1)
} (6--)

(7--) lor_h’ <@ CPA_Game_real(Adv).A.guess(c)
(8--) if (Oracle.lor_h = lor_h’) {
(8.1) gamedecision <- ACCEPT
(8--) else {
(8?1) gamedecision <- REJECT
(8--)

post = ={gamedecision}
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Applying inline* checks both sides for a procedure call. If any is found and the procedure is defined
beforehand it is replaced by the procedure itself. This makes the whole goal a lot longer.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1--) x <$ dt
y <$ dt ( 2--) y <$ dt
z0 <- x * y ( 3--) z <- x * y
z1 <$ dt ( 4--) pkI <- g ˆ x
gx <- g ˆ x ( 5--) gyI <- g ˆ y
gy <- g ˆ y ( 6--) gzI <- g ˆ z
gz <- g ˆ z0 ( 7--) Oracle.pk <- pkI
pkI <- gx ( 8--) Oracle.gy <- gyI
gyI <- gy ( 9--) Oracle.gz <- gzI
gzI <- gz (10--) Oracle.lor_h <$ distr_LORhidden
Oracle.pk <- pkI (11--) (m0, m1) <@

( -) CPA_Game_real(Adv).A.choose(g ˆ x)
Oracle.gy <- gyI (12--) m00 <- m0
Oracle.gz <- gzI (13--) m10 <- m1
Oracle.lor_h <$ distr_LORhidden (14--) if (Oracle.lor_h = LEFT) {

(14.1) c0 <- (Oracle.gy, Oracle.gz * m00)
(14--) else {
(14?1) c0 <- (Oracle.gy, Oracle.gz * m10)
(14--)

(m0, m1) <@ (15--) c <- c0
Distinguisher(Adv).A.choose(gx) ( -)

m00 <- m0 (16--) lor_h’ <@ CPA_Game_real(Adv).A.guess(c)
m10 <- m1 (17--) if (Oracle.lor_h = lor_h’) {

(17.1) gamedecision <- ACCEPT
(17--) else {
(17?1) gamedecision <- REJECT
(17--)

if (Oracle.lor_h = LEFT) { (18--)
c0 <- (Oracle.gy, Oracle.gz * m00) (18.1)

) else { (18--)
c0 <- (Oracle.gy, Oracle.gz * m10) (18?1)

} (18--)
c <- c0 (19--)
lor_h’ <@ Distinguisher(Adv).A.guess(c) (20--)
if (Oracle.lor_h = lor_h’) { (21--)

ddh_h’0 <- REAL (21.1)
) else { (21--)

ddh_h’0 <- RANDOM (21?1)
} (21--)
ddh_h’ <- ddh_h’0 (22--)
if (ddh_h = ddh_h’) { (23--)

gamedecision <- ACCEPT (23.1)
) else { (23--)

gamedecision <- REJECT (23?1)
} (23--)

post = ={gamedecision}
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The left side has in line 4 the variable z1 which is not used on the right side. With swap the line moves
to the end (which is done manually by moving it 19 lines downwards). This is done so both sides are
similar before that part.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1--) x <$ dt
y <$ dt ( 2--) y <$ dt
z0 <- x * y ( 3--) z <- x * y
gx <- g ˆ x ( 4--) pkI <- g ˆ x
gy <- g ˆ y ( 5--) gyI <- g ˆ y
gz <- g ˆ z0 ( 6--) gzI <- g ˆ z
pkI <- gx ( 7--) Oracle.pk <- pkI
gyI <- gy ( 8--) Oracle.gy <- gyI
gzI <- gz ( 9--) Oracle.gz <- gzI
Oracle.pk <- pkI (10--) Oracle.lor_h <$ distr_LORhidden
Oracle.gy <- gyI (11--) (m0, m1) <@

( -) CPA_Game_real(Adv).A.choose(g ˆ x)
Oracle.gz <- gzI (12--) m00 <- m0
Oracle.lor_h <$ distr_LORhidden (13--) m10 <- m1
(m0, m1) <@ (14--) if (Oracle.lor_h = LEFT) {
Distinguisher(Adv).A.choose(gx) ( -)

(14.1) c0 <- (Oracle.gy, Oracle.gz * m00)
(14--) else {
(14?1) c0 <- (Oracle.gy, Oracle.gz * m10)
(14--)

m00 <- m0 (15--) c <- c0
m10 <- m1 (16--) lor_h’ <@ CPA_Game_real(Adv).A.guess(c)
if (Oracle.lor_h = LEFT) { (17--) if (Oracle.lor_h = lor_h’) {
c0 <- (Oracle.gy, Oracle.gz * m00) (17.1) gamedecision <- ACCEPT

) else { (17--) else {
c0 <- (Oracle.gy, Oracle.gz * m10) (17?1) gamedecision <- REJECT
} (17--)
c <- c0 (18--)
lor_h’ <@ Distinguisher(Adv).A.guess(c) (19--)
if (Oracle.lor_h = lor_h’) { (20--)

ddh_h’0 <- REAL (20.1)
) else { (20--)

ddh_h’0 <- RANDOM (20?1)
} (20--)
ddh_h’ <- ddh_h’0 (21--)
if (ddh_h = ddh_h’) { (22--)

gamedecision <- ACCEPT (22.1)
) else { (22--)
gamedecision <- REJECT (22?1)
} (22--)
z1 <$ dt (23--)

post = ={gamedecision}
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The tactic rnd moves the random assignment for z1 into the post condition, removing it from the
procedure step on the left side.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1--) x <$ dt
y <$ dt ( 2--) y <$ dt
z0 <- x * y ( 3--) z <- x * y
gx <- g ˆ x ( 4--) pkI <- g ˆ x
gy <- g ˆ y ( 5--) gyI <- g ˆ y
gz <- g ˆ z0 ( 6--) gzI <- g ˆ z
pkI <- gx ( 7--) Oracle.pk <- pkI
gyI <- gy ( 8--) Oracle.gy <- gyI
gzI <- gz ( 9--) Oracle.gz <- gzI
Oracle.pk <- pkI (10--) Oracle.lor_h <$ distr_LORhidden
Oracle.gy <- gyI (11--) (m0, m1) <@

( -) CPA_Game_real(Adv).A.choose(g ˆ x)
Oracle.gz <- gzI (12--) m00 <- m0
Oracle.lor_h <$ distr_LORhidden (13--) m10 <- m1
(m0, m1) <@ (14--) if (Oracle.lor_h = LEFT) {
Distinguisher(Adv).A.choose(gx) ( -)

(14.1) c0 <- (Oracle.gy, Oracle.gz * m00)
(14--) else {
(14?1) c0 <- (Oracle.gy, Oracle.gz * m10)
(14--)

m00 <- m0 (15--) c <- c0
m10 <- m1 (16--) lor_h’ <@ CPA_Game_real(Adv).A.guess(c)
if (Oracle.lor_h = LEFT) { (17--) if (Oracle.lor_h = lor_h’) {
c0 <- (Oracle.gy, Oracle.gz * m00) (17.1) gamedecision <- ACCEPT

) else { (17--) else {
c0 <- (Oracle.gy, Oracle.gz * m10) (17?1) gamedecision <- REJECT
} (17--)
c <- c0 (18--)
lor_h’ <@ Distinguisher(Adv).A.guess(c) (19--)
if (Oracle.lor_h = lor_h’) { (20--)

ddh_h’0 <- REAL (20.1)
) else { (20--)

ddh_h’0 <- RANDOM (20?1)
} (20--)
ddh_h’ <- ddh_h’0 (21--)
if (ddh_h = ddh_h’) { (22--)

gamedecision <- ACCEPT (22.1)
) else { (22--)
gamedecision <- REJECT (22?1)
} (22--)

post = is_lossless dt && forall (z1_0 : t), z1_0 \in dt => ={gamedecision}
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If one wants to apply a tactic t2 to every goal produced by a tactic t1 write t1; t2 . The tactic wp moves
all assignments that are not random or a procedure callinto the post condition and simplify removes a
lot of trivial statements by shortening it (for example instead of writing “ACCEPT = ACCEPT” shortens
to “true”), thus making it easier to read, and fusing if-statements into a simpler form.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1--) x <$ dt
y <$ dt ( 2--) y <$ dt
z0 <- x * y ( 3--) z <- x * y
gx <- g ˆ x ( 4--) pkI <- g ˆ x
gy <- g ˆ y ( 5--) gyI <- g ˆ y
gz <- g ˆ z0 ( 6--) gzI <- g ˆ z
pkI <- gx ( 7--) Oracle.pk <- pkI
gyI <- gy ( 8--) Oracle.gy <- gyI
gzI <- gz ( 9--) Oracle.gz <- gzI
Oracle.pk <- pkI (10--) Oracle.lor_h <$ distr_LORhidden
Oracle.gy <- gyI (11--) (m0, m1) <@

( -) CPA_Game_real(Adv).A.choose(g ˆ x)
Oracle.gz <- gzI (12--) m00 <- m0
Oracle.lor_h <$ distr_LORhidden (13--) m10 <- m1
(m0, m1) <@ (14--) if (Oracle.lor_h = LEFT) {
Distinguisher(Adv).A.choose(gx) ( -)

(14.1) c0 <- (Oracle.gy, Oracle.gz * m00)
(14--) else {
(14?1) c0 <- (Oracle.gy, Oracle.gz * m10)
(14--)

m00 <- m0 (15--) c <- c0
m10 <- m1 (16--) lor_h’ <@ CPA_Game_real(Adv).A.guess(c)
if (Oracle.lor_h = LEFT) { (17--)
c0 <- (Oracle.gy, Oracle.gz * m00) (17.1)

) else { (17--)
c0 <- (Oracle.gy, Oracle.gz * m10) (17?1)
} (17--)
c <- c0 (18--)
lor_h’ <@ Distinguisher(Adv).A.guess(c) (19--)

The post-condition is on the next page.
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post =
if Oracle.lor_h{2} = lor_h’{2} then

if Oracle.lor_h{1} = lor_h’{1} then
if ddh_h{1} = REAL then is_lossless dt
else is_lossless dt && forall (z1_0 : t), z1_0 \notin dt

else
if ddh_h{1} = RANDOM then is_lossless dt
else is_lossless dt && forall (z1_0 : t), z1_0 \notin dt

else
if Oracle.lor_h{1} = lor_h’{1} then

if ddh_h{1} = REAL then
is_lossless dt && forall (z1_0 : t), z1_0 \notin dt

else is_lossless dt
else
if ddh_h{1} = RANDOM then
is_lossless dt && forall (z1_0 : t), z1_0 \notin dt

else is_lossless dt

From this point onwards the post-condition will not be shown since it is too large without much information
one can gain from it.
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The tactic call produces looks at the current procedure assignment (this can only be done if both sides
end with such an assignment) and produces new goals which are stating assumptions about the equality.
Here this means that 2 goals would be produced, one for every procedure the adversary is allowed to call
from the oracles. Inside the parantheses of call every variable that should be assumed to be the same
has to be written. In this case the variables pk, gy, gz and lor_h are assumed to be equivalent in both
sides. This changes the current post condition such that one has to show that those variables are truly
equivalent.
By using try before a tactic, it is only applied it if it does not fail. Together with sim , which reduces
an equality statement into a simpler form and can even solve it if they are similar enough, the goals
produced by call are solved instantly.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1--) x <$ dt
y <$ dt ( 2--) y <$ dt
z0 <- x * y ( 3--) z <- x * y
gx <- g ˆ x ( 4--) pkI <- g ˆ x
gy <- g ˆ y ( 5--) gyI <- g ˆ y
gz <- g ˆ z0 ( 6--) gzI <- g ˆ z
pkI <- gx ( 7--) Oracle.pk <- pkI
gyI <- gy ( 8--) Oracle.gy <- gyI
gzI <- gz ( 9--) Oracle.gz <- gzI
Oracle.pk <- pkI (10--) Oracle.lor_h <$ distr_LORhidden
Oracle.gy <- gyI (11--) (m0, m1) <@

( -) CPA_Game_real(Adv).A.choose(g ˆ x)
Oracle.gz <- gzI (12--) m00 <- m0
Oracle.lor_h <$ distr_LORhidden (13--) m10 <- m1
(m0, m1) <@ (14--) if (Oracle.lor_h = LEFT) {
Distinguisher(Adv).A.choose(gx) ( -)

(14.1) c0 <- (Oracle.gy, Oracle.gz * m00)
(14--) else {
(14?1) c0 <- (Oracle.gy, Oracle.gz * m10)
(14--)

m00 <- m0 (15--) c <- c0
m10 <- m1 (16--)
if (Oracle.lor_h = LEFT) { (17--)
c0 <- (Oracle.gy, Oracle.gz * m00) (17.1)

) else { (17--)
c0 <- (Oracle.gy, Oracle.gz * m10) (17?1)
} (17--)
c <- c0 (18--)
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After applying auto again:

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1) x <$ dt
y <$ dt ( 2) y <$ dt
z0 <- x * y ( 3) z <- x * y
gx <- g ˆ x ( 4) pkI <- g ˆ x
gy <- g ˆ y ( 5) gyI <- g ˆ y
gz <- g ˆ z0 ( 6) gzI <- g ˆ z
pkI <- gx ( 7) Oracle.pk <- pkI
gyI <- gy ( 8) Oracle.gy <- gyI
gzI <- gz ( 9) Oracle.gz <- gzI
Oracle.pk <- pkI (10) Oracle.lor_h <$ distr_LORhidden
Oracle.gy <- gyI (11) (m0, m1) <@

( ) CPA_Game_real(Adv).A.choose(g ˆ x)
Oracle.gz <- gzI (12)
Oracle.lor_h <$ distr_LORhidden (13)
(m0, m1) <@ (14)
Distinguisher(Adv).A.choose(gx) ( )
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Before call was used for the procedure guess of the adversary, now use it for procedure choose.

Current goal

Type variables: <none>

&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
&1 (left ) : DDH_Game_input(Distinguisher(Adv)).main
&2 (right) : CPA_Game_real(Adv).main

pre =
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m}

x <$ dt ( 1) x <$ dt
y <$ dt ( 2) y <$ dt
z0 <- x * y ( 3) z <- x * y
gx <- g ˆ x ( 4) pkI <- g ˆ x
gy <- g ˆ y ( 5) gyI <- g ˆ y
gz <- g ˆ z0 ( 6) gzI <- g ˆ z
pkI <- gx ( 7) Oracle.pk <- pkI
gyI <- gy ( 8) Oracle.gy <- gyI
gzI <- gz ( 9) Oracle.gz <- gzI
Oracle.pk <- pkI (10) Oracle.lor_h <$ distr_LORhidden
Oracle.gy <- gyI (11)
Oracle.gz <- gzI (12)
Oracle.lor_h <$ distr_LORhidden (13)
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After applying auto again, every step of the procedures on both sides are moved into the post condition.
Therefore the only goal that is left is a single statement that has to be shown. To give a small overview
how that looks like the next code (split onto two pages) already has the followup tactic simplify applied
to it.

Current goal
Type variables: <none>
&m: memory
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
forall &1 &2,
(glob Adv){2} = (glob Adv){m} /\
ddh_h{1} = REAL /\ (glob Adv){1} = (glob Adv){m} =>
forall (xL : t),

xL \in dt =>
(xL \in dt) &&
forall (yL : t),
yL \in dt =>
(yL \in dt) &&
forall (lor_hL : LORhidden_),

lor_hL \in distr_LORhidden =>
(lor_hL \in distr_LORhidden) &&
={glob Adv} &&
forall (result_L result_R : ptxt_ * ptxt_) (Adv_L
Adv_R : (glob Adv)),
result_L = result_R /\ Adv_L = Adv_R =>
if lor_hL = LEFT then
if lor_hL = LEFT then

(g ˆ (xL * yL) * result_L.‘1 = g ˆ (xL * yL) * result_R.‘1 /\
Adv_L = Adv_R) &&

forall (result_L0 result_R0 : LORhidden_) (Adv_L0
Adv_R0 : (glob Adv)),
result_L0 = result_R0 /\ Adv_L0 = Adv_R0 =>
if lor_hL = result_R0 then
if lor_hL = result_L0 then

if ddh_h{1} = REAL then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if ddh_h{1} = RANDOM then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if lor_hL = result_L0 then

if ddh_h{1} = REAL then
is_lossless dt && forall (z1 : t), z1 \notin dt

else is_lossless dt
else

if ddh_h{1} = RANDOM then
is_lossless dt && forall (z1 : t), z1 \notin dt

else is_lossless dt
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else
(g ˆ (xL * yL) * result_L.‘2 = g ˆ (xL * yL) * result_R.‘1 /\
Adv_L = Adv_R) &&

forall (result_L0 result_R0 : LORhidden_) (Adv_L0
Adv_R0 : (glob Adv)),
result_L0 = result_R0 /\ Adv_L0 = Adv_R0 =>
if lor_hL = result_R0 then
if lor_hL = result_L0 then
if ddh_h{1} = REAL then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if ddh_h{1} = RANDOM then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if lor_hL = result_L0 then
if ddh_h{1} = REAL then

is_lossless dt && forall (z1 : t), z1 \notin dt
else is_lossless dt

else
if ddh_h{1} = RANDOM then

is_lossless dt && forall (z1 : t), z1 \notin dt
else is_lossless dt

else
if lor_hL = LEFT then

(g ˆ (xL * yL) * result_L.‘1 = g ˆ (xL * yL) * result_R.‘2 /\
Adv_L = Adv_R) &&

forall (result_L0 result_R0 : LORhidden_) (Adv_L0
Adv_R0 : (glob Adv)),
result_L0 = result_R0 /\ Adv_L0 = Adv_R0 =>
if lor_hL = result_R0 then
if lor_hL = result_L0 then
if ddh_h{1} = REAL then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if ddh_h{1} = RANDOM then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if lor_hL = result_L0 then
if ddh_h{1} = REAL then

is_lossless dt && forall (z1 : t), z1 \notin dt
else is_lossless dt

else
if ddh_h{1} = RANDOM then

is_lossless dt && forall (z1 : t), z1 \notin dt
else is_lossless dt

else
(g ˆ (xL * yL) * result_L.‘2 = g ˆ (xL * yL) * result_R.‘2 /\
Adv_L = Adv_R) &&

forall (result_L0 result_R0 : LORhidden_) (Adv_L0
Adv_R0 : (glob Adv)),
result_L0 = result_R0 /\ Adv_L0 = Adv_R0 =>
if lor_hL = result_R0 then

if lor_hL = result_L0 then
if ddh_h{1} = REAL then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if ddh_h{1} = RANDOM then is_lossless dt
else is_lossless dt && forall (z1 : t), z1 \notin dt

else
if lor_hL = result_L0 then
if ddh_h{1} = REAL then

is_lossless dt && forall (z1 : t), z1 \notin dt
else is_lossless dt

else
if ddh_h{1} = RANDOM then

is_lossless dt && forall (z1 : t), z1 \notin dt
else is_lossless dt
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The tactic progress changes the whole goal, which has to be only one statement as in the last step,
into several smaller ones that are easier to read and solve. In this case 4 goals would be produced which
all are solved if one can show that the distribution call dt terminates with probability 1 (which one is
allowed to assume, otherwise the key-generation would not even work). One of those goals looks like this:

Current goal (remaining: 4)
Type variables: <none>
&m: memory
&1: memory <DDH_Game_input(Distinguisher(Adv)).main>
&2: memory <CPA_Game_real(Adv).main>
xL: t
H : xL \in dt
H0: xL \in dt
yL: t
H1: yL \in dt
H2: yL \in dt
result_R: ptxt_ * ptxt_
Adv_R: (glob Adv)
H3: LEFT \in distr_LORhidden
H4: LEFT \in distr_LORhidden
Adv_R0: (glob Adv)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
is_lossless dt

This and the other goals are solved by the tactic apply , which needs an axiom or lemma as input. It
gets the axiom dt_ll as input, which states that dt is lossless (exactly what is needed here).

As the last step this produces an empty goal-list, thus the whole lemma can be saved with the command
qed .

The following proofs are only shown without explanation for tactics or the goal-list.
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5.3.2 Going on with Proofs
For the right side

A wins CPArandom iff D(A) loses DDH given hDDH = 1

the implementation looks like:

lemma right_side &m:
Pr[DDH_Game_input(Distinguisher(Adv)).main(RANDOM) @ &m : (res = ACCEPT)] =
Pr[CPA_Game_random(Adv).main() @ &m : (res = ACCEPT)].

proof.
byequiv => //.
proc.
rcondf{1} 5.
by auto.
inline*.
wp.
simplify; auto; simplify; auto.
call(_: ={pk, gy, gz, lor _h}(Oracle, Oracle)); try sim.
auto.
call(_: ={pk, gy, gz, lor_h}(Oracle, Oracle)); try sim.
auto.

qed.

Since both sides are proven, the Game Hopping Lemma can be applied. The only thing to do now is to
check that CPArandom is a guessing game.
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This is done via one intermediate step, where another module called Oracle_nom is used, which is nearly
the same as the module Oracle. The only difference being inside the procedure enc_lor , where no
message is used for encryption instead of the message mh. This module looks like this:

module Oracle_nom : Oracle_ = {
var lor_h : LORhidden_
var pk : pk_
var gy : group
var gz : group

proc init(pkI : pk_, gyI gzI : group) : unit = {
pk = pkI;
gy = gyI;
gz = gzI;
lor_h <$ distr_LORhidden;

}
proc public_knowledge() : pk_ = {

return pk;
}
proc enc_lor(m0 m1 : ptxt_) : ctxt_ = {

return (gy, gz); (* This line here is different. *)
}
proc enc(m : ptxt_) : ctxt_ = {

var t;
t <$ FDistr.dt;
return (g ˆ t, (pk ˆ t) * m);

}
}.
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Due to the way CPA_Game_random is implemented, the call to Oracle is fixed. Thus another ver-
sion, called CPA_Game_random_nom, is needed. It is the same as CPA_Game_random while calling
Oracle_nom instead of Oracle:

module CPA_Game_random_nom (Adv : CPA_Adversary_) = {
module A = Adv(Oracle_nom)

proc main() : gamedecision_ = {
var lor_h’ : LORhidden_;
var gamedecision : gamedecision_;
var x, y, z;
var m0, m1, c;

x <$ FDistr.dt;
y <$ FDistr.dt;
z <$ FDistr.dt;

Oracle_nom.init(g ˆ x, g ˆ y, g ˆ z);

(m0, m1) <@ A.choose(g ˆ x);
c = Oracle_nom.enc_lor(m0, m1);
lor_h’ <@ A.guess(c);

if (Oracle_nom.lor_h = lor_h’){
gamedecision = ACCEPT;}
else {
gamedecision = REJECT;}

return gamedecision;
}

}.

Contemplating at this point, it would already have been better for a small project like this to have Oracle
as an input instead of a fixed module that is inserted.
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First show that both modules are the same for an adversary that has disjoint global variables from both,
Oracle and Oracle_nom:

declare module Adv : CPA_Adversary_{Oracle, Oracle_nom}.
Pr[CPA_Game_random(Adv).main() @ &m : (res = ACCEPT)] =
Pr[CPA_Game_random_nom(Adv).main() @ &m : (res = ACCEPT)].

proof.
byequiv; auto.
proc; inline*.
auto.
call(_: ={pk, gy, lor_h}(Oracle, Oracle_nom)); try sim.
auto.
swap{1} 3 2.
swap{1} [5..6] 2.
swap{1} 11 -4.
swap{1} 11 -4.
swap{2} 3 2.
swap{2} [5..6] 2.
swap{2} 11 -4.
swap{2} 11 -4.
wp.
rnd (fun z, z + log (if (Oracle.lor_h = LEFT) then m0 else m1){1})

(fun z, z - log (if (Oracle.lor_h = LEFT) then m0 else m1){1}).
auto.
call(_: ={pk, gy, lor_h}(Oracle, Oracle_nom)); try sim.
auto.
simplify.
progress.
algebra.
smt.
smt.
algebra.
algebra.
algebra.

qed.

This makes the proof a whole lot easier, since the probability of 1/2 can be shown for this new game
easier.
Before doing that, a few axioms have to be defined. Those axioms all just state, that every procedure is
lossless (meaning every procedure terminates with probability 1).

For Oracle_nom:

axiom or_nom_pk_ll &m:
islossless Oracle_nom.public_knowledge.

axiom or_nom_enc_ll &m:
islossless Oracle_nom.enc.
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For adversary:

axiom adv_ll1 &m:
forall (Or <: Oracle_{Adv}),

islossless Or.public_knowledge => islossless Or.enc =>
islossless Adv(Or).guess.

axiom adv_ll2 &m:
forall (Or <: Oracle_{Adv}),

islossless Or.public_knowledge => islossless Or.enc =>
islossless Adv(Or).choose.

CPAreal is as good as a guessing game:

lemma nom_half &m:
Pr[CPA_Game_random_nom(Adv).main() @ &m : (res = ACCEPT)] = 1%r/2%r.

proof.
byphoare; auto.
proc; inline*.
auto.
swap 10 5.
rnd.
call(_: true).
apply adv_ll1.
apply or_nom_pk_ll.
apply or_nom_enc_ll.
auto.
call(_: true).
apply adv_ll2.
by proc; auto.
by proc; auto => ??; apply dt_ll.
auto.
progress.
apply dt_ll.
apply distr_LORhidden_1E.

qed.

Final result using both lemmas:

lemma zero_advantage &m:
`| Pr[CPA_Game_random(Adv).main() @ &m : (res = ACCEPT)] - 1%r/2%r | = 0%r.

proof.
rewrite (same_nom &m).
rewrite (nom_half &m).
auto.

qed.

By using EasyCrypt it is shown that the ElGamal encryption scheme is IND-CPA secure if DDH is hard.
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6 Conclusion

Using a computer-aided toolset for proving cryptographic statements is good at handling small details.
Those details can easily be seen as trivial and later on discovered as a considerably large problem. Even
though the workload rises by a great margin for using EasyCrypt, the result can be used to underline
that a proof was checked formally and thoroughly.
The current problem for such toolsets, or automatic provers, lies not only in learning a new computer
languag. Cryptography is such a new field that there exists no universal language standard. Therefore
every scientific group uses their own style for writing handwritten proofs. That means if one wants to
implement their own handwritten proof, they first have to translate it into the style the creators use and
only then it can be used for transferring into code. The difference in human language arised as a challenge
in this project, since the main issue was in transferring the game-style language from chapter 2 into the
language of the authors of EasyCrypt, which their program fully supports.

In my opinion EasyCrypt was particularly helpful at getting a better understanding of structuring a proof
in cryptography. Sadly it needed a lot of time to achieve even such a small example, mainly because
EasyCrypt is not newcomer-friendly. As a next step the implementation of the pseudorandom generator
would be good
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