
Lab Report

Automatic Security Protocol Analysis
with Tamarin-Prover

Eike Stadtländer

7 February, 2019

Abstract

In the face of attacks against cryptographic protocols both of practical and
theoretical kind and with increasing frequency, we are interested in improving
the trustworthiness of security proofs. This part of security analyses is prone
to human error to a special degree because mistakes in mathematical proofs are
often oblique and thus hard to spot. Moreover, the sheer complexity of protocols
and their extensions and the consequential length of security proofs are severe
bottlenecks. This motivates the use of automated security analysis tools and proof
assistants as a solution to this problem. We focus on an evaluation of Tamarin-
Prover while working towards an automatic security analysis of the Internet Key
Exchange version 2 which is used in IPsec.

2

Contents
1. Introduction 4

1.1. Motivation and Relevance . 4
1.2. Related Work . 5
1.3. Our Contribution . 6

2. Tamarin-Prover 7
2.1. An Introductory Example . 7
2.2. Building Blocks for Cryptographic Protocols 16

3. Towards an Automatic Analysis of IPsec 21
3.1. Finite State Machine of IKEv2 Initialization Phase 22
3.2. Implementation Details . 23
3.3. Lemmata and Results . 24

4. Discussion 25
4.1. Tamarin-Prover’s Security Model . 25
4.2. Practical Limitations of Tamarin-Prover 26
4.3. Strengths of Tamarin-Prover . 26

5. Conclusion and Future Work 26

References 27

A. Code of the Introductory Example 29

B. Code of the Signature Scheme Example 30

3

1. Introduction

1. Introduction
1.1. Motivation and Relevance
In modern society, cryptographic protocols are ubiquitous though unnoticed: Most
people use them on a day-to-day basis without being aware of it. For example, in-
stant messaging applications make extensive use of cryptographic protocols to pro-
vide confidentiality, integrity or authenticity. Even more crucial, many government
and business operations rely on securing data and the transmission thereof. Hence, it
is absolutely essential that we can rely on the security of cryptographic protocols.

Modern cryptography establishes security properties of its primitives and protocols
by creating mathematical security proofs. However, experience shows that both the-
oretical proofs as well as practical implementations cannot always be trusted. For
instance, the Heartbleed attack is a security bug in the TLS implementation OpenSSL
v1.0.1-v1.0.1f that enabled attackers to obtain sensitive data due to a buffer overflow
(MITRE, 2013; Durumeric et al., 2014). And on the theoretical side, Daniel Bleichen-
bacher was able to find a subtle flaw in the design of the padding of the encoding
function in PKCS#1 v1.5 (Bleichenbacher, 1998).

Why is it that theoretical and practical security is so hard to achieve? We argue that
the human factor plays a major role in this story. First of all, more often than not there
is an unbridgeable gap between the idealized theoretical description and the down-to-
earth implementation of the theory. Second, there are already many prominent cases
where mathematical proofs contain flaws which are very difficult to detect for humans
due to a) the obscurity of the flaws, b) the length and complexity of the proof, c) the
time available in the review process (Opfer, 2011; Blum, 2017; Mochizuki, 2018). In
practice, protocols like TLS or IPsec offer a large suite of cryptographic primitives and
allow for extensions. This creates many different cases and possible interdependencies
to be considered when analysing the security. This makes it particularly difficult and
time consuming for humans to analyse the security of such protocols. Even more so
since extensions, variations and even new kinds of protocols are easier to create than
to analyse.

Thus, it seems natural to solve these problems by using an automated security anal-
ysis tool which either finds security proofs by itself or at least assists at it. While this
probably still does not provide perfect security it gives an additional layer of trust in
the analysed security properties.

In our lab, we evaluated the suitability and capabilities of such automated secu-
rity analysis tools with regards to analysing large protocols like IPsec and TLS. More
specifically, we made some effort towards an analysis of IPsec using Tamarin-Prover
inspired by prior work done for analysing TLS by Cremers et al. (2017), cf. section 1.3.

4

1. Introduction

1.2. Related Work
There already exist automated provers and verification tools along with underlying
theories for both the mathematical domain and more specifically the cryptographic
domain.

Most notably among the tools working in the general mathematical domain is Coq.
This semi-automated prover was applied to the Four-Color Theorem by Gonthier (2008).
Tools which are tailored to security analyses include amongst others Tamarin-Prover
and EasyCrypt. These tools were evaluated in our lab.

Tamarin-Prover

Tamarin-Prover is a “security protocol verification tool that supports both falsifica-
tion and unbounded verification in the symbolic model” (Basin et al., 2014). It was
initially developed by Schmidt (2012) and Meier (2013) as part of their dissertations
at ETH Zurich. Schmidt (2012) laid the foundation of a constraint solving algorithm
whose implementation was called Tamarin-Prover. This tool was subsequently ap-
plied to analyse several cryptographic protocols. Meier (2013) built upon that work by
expanding the verification theory underpinning Tamarin-Prover so that it additionally
supports Diffie-Hellman exponentiation, bilinear pairings and multisets (Meier, 2013,
pg. 136ff.).

Cremers et al. (2017) applied Tamarin-Prover extensively to analyse the security of
TLS1.3 draft 21. They cover analysis of all supported handshake modes and come
to the conclusion that the security requirements are met in the symbolic model of
Tamarin-Prover.

EasyCrypt

EasyCrypt is a semi-automated proof assistant inspired by Coq and SMT solvers. It
was initially developed by the IMDEA Software Institute. Later, Inria and École Poly-
technique joined the development and maintenance of EasyCrypt (IMDEA Software
Institute, 2009).

In contrast to Tamarin-Prover, EasyCrypt works in a computational model and builds
game-based proofs in the same style as described by Lindell and Katz (2014).

We concentrate on the evaluation of Tamarin-Prover. However, an evaluation of
EasyCrypt from a very similar perspective as we do here with Tamarin-Prover was
done by Nussbaumer and Nüsken (2018). Furthermore, EasyCrypt was used to analyse
the security of the TLS1.2 Handshake (Bhargavan, Cédric Fournet, et al., 2014).

5

1. Introduction

F* Programming Language

A last notable mention is the F* programming language which provides verification
as a baked-in feature. That means, it is possible to give precise specifications for F*
programs and verify the actual programs against their specifications (The F* Team,
2019). There exists a verified reference implementation of TLS1.2 in F* called miTLS
(Bhargavan, Cédric Fournet, et al., 2013).

1.3. Our Contribution
As noted before, we were interested in evaluating Tamarin-Prover as a suitable tool for
automatic security analysis of cryptographic protocols. As there is far less work on
IPsec compared to existing work on TLS, we are particularly interested in analysing
the IPsec protocol.

First, we implemented an ephemeral Diffie-Hellman key exchange, an adaptation
of a non-ephemeral Diffie-Hellman key exchange by Wong (2017). In this example,
two statements were analysed. The first being that the Diffie-Hellman key exchange as
implemented in Tamarin-Prover is executable by honest parties in the intended way.
The second being that an active attacker can perform a man-in-the-middle attack. We
will use this example in section 2.1 to introduce Tamarin-Prover and its language.

Second, we created and discussed building blocks necessary for implementing a
cryptographic protocol like IPsec. Although our interest is for the IPsec protocol, we
tried to present these building blocks in a general way so that they can in principle be
applied to other protocols as well. They include signature schemes, authenticated en-
cryption and Diffie-Hellman exponentiation. The findings of this process are presented
in section 2.2

Third, we used our findings and the building blocks to implement the initialization
phase of the key exchange used in IPsec. This should be considered as work in progress
because the initialization phase alone is only part of IPsec’s key exchange. However,
our implementation so far was successfully analysed with the following expected find-
ings: First, the honest setup is indeed executable. And second, the security parameter
is not secure in the sense that a man-in-the-middle is able to let two parties think they
talk to each other but deriving different security parameters. This motivates the au-
thentication phase of this key exchange protocol. Section 3 deals with these results.

Lastly, we discuss our findings in the context of improving the trustworthiness of
security proofs and the effectiveness of automated security analysis tooling in section 4.

6

2. Tamarin-Prover

2. Tamarin-Prover
Tamarin-Prover can verify or falsify lemmata stated in its specification language. As
we will argue in section 2.1, lemmata usually represent security properties. Here, veri-
fication means that the specified protocol satisfies the respective security property and
falsification means that Tamarin-Prover found an attack against the respective security
property (The Tamarin Team, 2019).

2.1. An Introductory Example
In this section, we present an annotated implementation and analysis of an ephemeral
Diffie-Hellman key exchange protocol using Tamarin-Prover. It is an adaptation of the
non-ephemeral Diffie-Hellman key exchange protocol implemented by Wong (2017).
The goal of this example is twofold. First, we want to introduce the syntax of the
specification language of Tamarin-Prover which is essential for the later sections. And
second, we want to illustrate a) how an actual protocol is implemented using this lan-
guage and b) how the language structures correspond to cryptographic primitives and
security properties.

Security Protocol Theories

A security protocol theory is a collection of
1. multiset rewriting rules which usually implement a protocol or more precisely

the state transitions of a protocol,
2. function symbols which may represent cryptographic primitives such as hash

functions or encryptions schemes,
3. equations which define the semantic of said function symbols like the correct-

ness equations connecting decryption and encryption algorithms,
4. lemmata which usually describe the security properties and sanity checks,
5. and other language constructs such as restrictions, built-ins and axioms

most of which will be explained in the following subsections.
The input to Tamarin-Prover is then a security protocol theory written and stored as

a single .spthy file. Depending on the mode in which it is executed Tamarin-Prover
either tries to verify or falsify every lemma specified in the security protocol theory or
it may present a semi-automatic interactive mode which can be explored by the user.

Syntax-wise, a security protocol theory is framed by the keyword theory, an iden-
tifier for the theory and the keywords begin and end. A skeleton of our soon-to-be
example might look as follows:

1 theory DHKE
2 begin

7

2. Tamarin-Prover

3

4 builtins: diffie-hellman
5

6 // ...
7 end

Using builtins one can enable certain features Tamarin-Prover is shipped with. In
our case, we need Diffie-Hellman exponentiation. There are also built-ins for symmet-
ric encryption, signatures and bilinear pairings. The rest of our example will unfold
from the line marked with the three-dot comment.

Labeled Multiset Rewriting, Traces and Lemmata

Simply put, multiset rewriting is the process of transforming a multiset into another
multiset by applying feasible and permitted rewriting rules. For instance, a multi-
set 𝑋 = {𝑥, 𝑥, 𝑦, 𝑧} might be transformed into or rewritten as the multiset 𝑋′ =
{𝑥, 𝑦, 𝑧, 𝑧} if there is a permitted rewriting rule consuming one 𝑥 and producing one
𝑧. There might also be a second rule consuming two 𝑦s and producing one 𝑧. Since
there is only one 𝑦 contained in 𝑋 it is not feasible to apply the second rule on 𝑋.

Schmidt (2012) and Meier (2013, sec. 7.2, pg. 76ff.) discovered that multiset rewrit-
ing can be used to implement the unbounded concurrent execution of cryptographic
protocols using rewriting rules which model the state transitions of the protocol in-
stances. As an example, in a client-server setting one might write a rule consuming an
idle state of the server and an incoming message of the client to produce a waiting state
of the server and an outgoing message to the client. As rules do not only consume and
produce states but also messages and other user-defined objects, the entities consumed
and produced by a rule are called premise facts and conclusion facts, respectively.

However, a slight adaptation from classical multiset rewriting was necessary to build
a verification theory on top of it. Suppose one wants Tamarin-Prover to verify that a
specified protocol is indeed correctly executable for honest parties. Then one could
formulate this property in case of a key exchange protocol by saying: “There is a se-
quence of feasible applications of rules such that–at the end–two parties derive the
same keys and correctly assume that each is talking to the other.”

Verification of this statement boils down to finding such a sequence of rules. How-
ever, in order to correctly keep track of the conditions, Schmidt (2012) and Meier
(2013) introduced a label for each rule which produces what they call action facts as a
side-effect of the rule’s application. This allows to encode “derive the same keys” and
“correctly assume that each is talking to the other” by action facts. Such sequences
of action facts are called traces when they additionally satisfy that no feasibility con-
straints are broken. For instance, each rule must be provided with the premise facts it
consumes by the chain of previous rules.

8

2. Tamarin-Prover

Security properties such as the honest setup described above can then be imple-
mented by first-order logic formulas on all traces, e.g. there exists a trace such that
conditions on the action facts corresponding to the respective security property hold
true.

This search for a satisfying trace is done by a backwards reachability analysis and
constraint solving. Again simply put although inaccurately one can say that Tamarin-
Prover does the following: the target action facts of an existentially quantified formula
are the starting point. Then Tamarin-Prover analyses all possible paths the target ac-
tion facts might arise from rule applications while satisfying the necessary conditions.
This may give rise to other action or premise facts which are not yet resolved. The
corresponding constraints are resolved–in the same way–by going further backwards
until none is left. If this process terminates, Tamarin-Prover found a satisfying trace
which means the statement is verified or is left with a contradictory constraint which
means that there is no such trace and the statement is falsified.

Lemmata with universally quantified statements are verified or falsified by analysing
the negated statement which is again an existentially quantified statement.

But there is no guarantee that Tamarin-Prover terminates during this process since
the underlying decision problem is undecidable (Meier, 2013, sec. 9.4, pg. 152).

Unfortunately, a comprehensive discussion of the theoretical foundation of Tamarin-
Prover go beyond the boundaries of this report. Please, confer to Meier (2013, ch. 8)
for an in-depth look at the verification theory Tamarin-Prover implements.

Nevertheless, we will go into a little more detail about what facts and terms actually
are because they are used very often.

Terms are the atomic entities in Tamarin-Prover. They represent cryptographic mes-
sages and bit strings, e.g. for key material. Mathematically, terms belong to a order-
sorted term algebra which intuitively means that they come with a certain structure:
They can be variables or constants of different sorts whereby the sorts have a partial
order attached to them. In Tamarin-Prover, several sorts of terms are distinguished:
message, public, fresh, and temporal terms. This is reflected in the syntax by a prefix
in front of the variable and constant identifier. Message terms, the most common type
of term, are not prefixed. Public terms are prefixed by $, fresh terms by ~, temporal
terms by #. For each sort, constant terms are enclosed in single quotes.

One can define function symbols over the sorts, meaning that the respective sort
can be plugged in. Each function symbol has an arity. For instance, cryptographic
primitives like encryption and decryption algorithms can be defined as binary/2-ary
function symbols. Plugging the expected number of terms of appropriate sorts into
a function symbol results in a term again. Suppose, there is a function symbol enc
representing the encryption algorithm, then enc(key, message) is again a term. In
Tamarin-Prover, we can define function symbols in the following way:

9

2. Tamarin-Prover

1 functions: enc/2, dec/2

Semantics of the function symbols can be described by equational theories. A gen-
eral equation can be defined as follows:

1 equations: dec(key, enc(key, message)) = message

This equation–when grounded over all possible valuations of the two occurring terms
key and message–induces an equational theory.

Now, facts are function symbols over the order-sorted term algebra described above
under consideration of the equational theories given in the security protocol theory.
They can be used to denote states and messages sent over a channel. There are three
distinguished facts in Tamarin-Prover which come with certain constraints:

• The fresh fact Fr is used to represent random choice of its entry. That means,
Fr(~x) establishes the fresh variable ~x to be randomly chosen. The fresh fact
is only allowed in the list of premise facts and can occur at most once for every
variable.

• The fact Out represents messages sent over a public channel known to the at-
tacker. Its content will be revealed to the attacker. However, the conclusion fact
Out(enc(k,x)) will only reveal enc(k,x) to the attacker. Neither k nor x
will be given to the attacker which makes sense. Out can only occur in the list
of conclusion facts of a rule.

• The fact In represents messages received over a public channel. They can only
occur in the list of premise facts of a rule.

There are message deduction rules pre-defined in Tamarin-Prover. Among other things,
they handle the transformation of Out facts into In facts so that these facts indeed rep-
resent sending and receiving messages. The message deduction rules include rules
representing the manipulation abilities of the attacker who will gain knowledge over
everything sent over the public channel this way.

This leaves us with the rough correspondences shown in table 1.

Key Exchange Protocol Implementation

The protocol we implemented is very brief: Alice, the client, chooses an ephemeral
Diffie-Hellman private key 𝑎 and composes a message: a quadruple consisting of the
message type client_hello, an identifier of Alice, an identifier of the intended re-
ceiver and her public Diffie-Hellman key share 𝐴 = 𝑔𝑎 where 𝑔 is a pre-defined group
element. Once Bob, the server, receives Alice’s hello message, he himself chooses an
ephemeral Diffie-Hellman secret key 𝑏, derives the shared secret 𝑆 = 𝐴𝑏 = 𝑔𝑎𝑏, and
sends a message consisting of the message type server_hello, Alice’s identifier, his
own identifier and his public Diffie-Hellman key 𝐵 = 𝑔𝑏 to Alice. At this point, Bob

10

2. Tamarin-Prover

Language Constructs Cryptographic Notions
Terms Cryptographic messages, bit strings

Function Symbols Cryptographic primitives
Equational Theories Semantics of cryptographic primitives

Rules State transitions of protocol instances, Oracles
Action facts Protocol transcripts

Rewriting Systems Protocol Specification, means of the Attacker
Traces Parallel executions of the protocol

Trace Formulas Security properties (e.g. confidentiality, authenticity)

Table 1: Correspondences between cryptographic notions and Tamarin-Prover’s lan-
guage

also creates a server session with the respective shared secret 𝑆. Once Alice receives
Bob’s message, she derives the shared secret 𝑆′ = 𝐵𝑎 = 𝑔𝑎𝑏 herself and creates a
client session with the derived shared secret 𝑆′.

We now want to describe the corresponding rules which implement this protocol.
The basic syntax for a rule in Tamarin-Prover is as follows:

1 rule Rule Identifier :
2 [Premise Facts]
3 --[Action Facts]->
4 [Conclusion Facts]

The rule identifier is used to refer to the rule, e.g. in error messages or in the interface
of the interactive mode. The actual labeled rewriting rule is specified with an arrow
notation, [] --[]-> [] where the first bracket specifies the premise facts which
the rule consumes, the second optional bracket specifies the action facts which are
created upon application of the rule and the third and last bracket is used for specifying
the conclusion facts which are created by application of the rule.

Note that it is possible to create so-called persistent facts which are not consumed
even though they are among the premise facts by prefixing an exclamation mark to the
fact. This is used for creating identities, for instance. Some rules require that a certain
identity, e.g. a server, exists while it is not desired that the existence of that identity
disappears after some rule was applied. Actually this could also be realized by recreat-
ing the fact in the conclusion facts of all rules which also consume the fact. However,
it would make the specification language unnecessarily complicated and prone to mis-
takes.

The first rule of the Diffie-Hellman key exchange we implemented is therefore a rule
which creates the persistent identities:

11

2. Tamarin-Prover

6 rule create_identity:
7 [] --> [!Id($C)]

This rule does not have any premise facts and establishes the existence of the persistent
identity fact !Id($C) corresponding to a publicly known identifier $C, e.g. the IP
address of the server or client.

Now, for the client. The client starts in an empty state. Once she decides to contact
the server she compiles her hello message and transitions into a waiting state. This
state has to hold the involved identities and the private key of the client. Therefore, we
get the following rule:

9 rule client_hello:
10 let
11 A = 'g'^~a
12 in
13 [!Id($C), !Id($S), Fr(~a)]
14 -->
15 [ClientWaiting($C, $S, ~a),
16 Out(<'client_hello', $C, $S, A>)]

This rule assumes that there are two known identities $C and $S. Moreover, using
the fresh fact on the variable ~a the client chooses a random private Diffie-Hellman
key. In the conclusion of the rule we find the client waiting state–containing the ses-
sion identities and the private Diffie-Hellman key–as well as the outgoing message, a
quadruple of the message type 'client_hello', the identities again and the public
Diffie-Hellman key A within the Out fact.

The server also starts in an empty state in which he expects a client hello message.
Whenever such message arrives, he checks that the message type is correct and the
identifier actually belongs to an existing identity. This is done by matching the iden-
tifier C to the persistent identity fact !Id(C). More precisely, if C does not belong
to a proper identity then the corresponding identity fact is not present for the premise
facts of the rule. Then, the server chooses a private Diffie-Hellman key randomly by
making use of the fresh fact on the variable ~b, derives the corresponding public key
B = 'g'^~b as well as the shared secret secret = A^~b using the data received
from the client and creates a session with the identifiers and the shared secret. Finally,
he composes a server_hello message and sends it using the Out fact again. This
leaves us with the following rule:

18 rule server_receive_hello:
19 let
20 B = 'g'^~b
21 secret = A^~b
22 in

12

2. Tamarin-Prover

23 [!Id($S), !Id(C),
24 In(<'client_hello', C, $S, A>),
25 Fr(~b)]
26 --[ServerCreatedSession(C, $S, secret)]->
27 [ServerSession(C, $S, secret),
28 Out(<'server_hello', C, $S, B>)]

Note that the Out fact emitted by the client_hello rule is not explicitly converted
into an In fact. This is because Tamarin-Prover automatically manages the means of
the attacker. Since it implements a Dolev-Yao attack model, the adversary controls the
traffic of the public channels. This is enforced by the message deduction rules which
amongst others contain rules which convert Out facts into In and give the contents of
the messages into the knowledge of the attacker, as explained earlier. Also, note that
the action fact logs the creation of the server’s session. This will later be used in the
lemmata to analyse the security of this protocol.

The last rule implements the client receiving the server_hello message: It re-
quires a ClientWaiting state in the premises, matching the identifiers and corre-
sponding identities of the incoming message. The client derives the shared secret as
well and creates a ClientSession with the same contents as the server did before.
At this point the protocol is done. The rule looks as follows:

30 rule client_receive_hello:
31 let
32 secret = B^~a
33 in
34 [!Id($C), !Id(S),
35 ClientWaiting($C, S, ~a),
36 In(<'server_hello', $C, S, B>)]
37 --[ClientCreatedSession($C, S, secret)]->
38 [ClientSession($C, S, secret)]

Lemmata and Analysis

As said before, we analysed two lemmata for this version of a Diffie-Hellman key ex-
change. The first lemma ensures that the protocol as implemented is executable by
honest parties and yields the expected result, i.e. both parties derive the same secret.
This lemma can be written in Tamarin-Prover’s syntax as follows:

40 lemma can_be_run:
41 exists-trace
42 ”
43 (Ex C S secret #i #j .
44 (ServerCreatedSession(C, S, secret) @ #i) &

13

2. Tamarin-Prover

45 (ClientCreatedSession(C, S, secret) @ #j))
46 ”

Here, exists-trace indicates that the lemma named can_be_run is existentially
quantified over the traces. Temporal variables are prefixed by a #. The lemma can be
read as follows: There exists a trace–a sequence of rule applications–such that we can
have a client C, a server S and a secret secret such that client and server created a
session with those identifiers at moments #i and #j and both derived the same secret
for this session.

The second lemma is intended to capture the confidentiality of the shared secret of
the protocol. Simply put, the lemma states that when two parties establish a session
with each other, the attacker does not obtain knowledge of the two secrets of the parties
indicated by the K action fact. Here we restrict the traces to the interesting cases,
namely that the server created his session before the client did and that server and
client are different identities in the first place. The lemma in Tamarin-Prover’s syntax
reads as follows:

48 lemma man_in_the_middle:
49 all-traces
50 ”
51 All C S secret1 secret2 #i #j .
52 (
53 ServerCreatedSession(C, S, secret2) @ #j &
54 ClientCreatedSession(C, S, secret1) @ #i &
55 #j < #i &
56 not(C = S)
57)
58 ==>
59 (not(Ex #k1 #k2 .
60 K(secret1) @ #k1 &
61 K(secret2) @ #k2))
62 ”

Note that the statement says that there are no moments #k1 and #k2 such that the at-
tacker gained knowledge of secret1 and secret2. This is a weaker security property
than to say secret1 or secret2. However, we will see that even the weaker security
notion will not be verified by Tamarin-Prover. Also note that in an honest setup, we
would have secret1 = secret2. But we do not want to restrict the powers of the
attacker here: He might manipulate the messages causing the involved parties to de-
rive different shared secrets. As we will see later, this is exactly what Tamarin-Prover
discovers.

The complete source code of the introductory example is given in appendix A. When
stored in a file named DHKE.spthy, one can analyse the protocol using Tamarin-

14

2. Tamarin-Prover

Prover using the command tamarin-prover --prove DHKE.spthy. This gives
the following shortened result:

1 analyzed: DHKE.spthy
2

3 can_be_run (exists-trace): verified (11 steps)
4 man_in_the_middle (all-traces): falsified - found trace (11

steps)↪

This tells us that a satisfying trace for the first lemma, can_be_run, could be found.
However, the second lemma was falsified. That means that Tamarin-Prover found a
counterexample to the statement. In other words, there is a way of applying the rules
so that the attacker obtains knowledge of the respective secrets. This is a security leak.
Figure 1 shows the constraint system of the attack against the second lemma which is
provided when Tamarin-Prover is run in interactive mode. The green boxes show the

Figure 1: Constraint system after Tamarin-Prover found the counterexample for
lemma man_in_the_middle

applied rules: the first line holds the premise facts, the second line the name of the
rule and possibly the actions facts and the third line the conclusion facts. The actions
of the attacker are shown as white ellipses. We can see that the attacker does not even
let the server and the client actually communicate. He simply impersonates the other
party, respectively, since identities as well as the used group element are not secured
in any way and publicly known. Here, Tamarin-Prover confirms the well-known fact
that Diffie-Hellman key exchanges without authentication do not provide any security
in the face of an active attacker.

However, the Diffie-Hellman protocol as described and implemented in the previous
section is most likely prone to DDoS attacks: The server creates and stores a session
state when the handshake is not completed yet. Therefore, a client can open many

15

2. Tamarin-Prover

different sessions with little effort and no need to store anything himself. This lever-
ages the power of a malicious client to perform a DDoS attack on a server. However,
Tamarin-Prover does not detect such vulnerabilities. At least, not without explicitly
formulating a corresponding lemma which possibly makes it necessary to change the
implementation, e.g. by introducing a session counter. This is a weakness of Tamarin-
Prover’s symbolic model.

2.2. Building Blocks for Cryptographic Protocols
Our main goal was to evaluate the suitability of Tamarin-Prover to analyse complex
cryptographic protocols. In particular, we were interested in analysing the security of
IPsec. We established the syntax and basic concepts of Tamarin-Prover in the previous
section 2.1. When working towards a reference implementation of IPsec in Tamarin-
Prover a crucial step is to implement and discuss the building blocks on which IPsec
relies. The Internet Key Exchange v2 (IKEv2) used in IPsec in particular relies on
random choices, Diffie-Hellman exponentiation, pseudo-random functions, signature
schemes, authenticated encryption schemes, and certificates (Kaufman et al., 2014).
Thus, we should discuss how it is possible to implement those in Tamarin-Prover and
whether or not the chosen implementation reflects the intended notions.

Random Choices and Diffie-Hellman Exponentiation

Random choices and Diffie-Hellman exponentiation are built into Tamarin-Prover.
Random choices are made by using the Fr fact, the fresh fact. This is a special fact

which is only allowed to appear at most once for each variable and only in the premise
facts (Meier, 2013, pg. 77). This is enforced and checked by Tamarin-Prover in the
well-formedness checks ran before the actual analysis. However, due to the way the
symbolic model works it is very difficult to express the possibility and probability of
two randomly chosen elements to be equal. A priori, two freshly generated names are
different: “This fact [the Fr fact] must be used when generating fresh (random) values,
and can only occur on the left-hand side of a rewrite rule, where its argument is the fresh
term. Tamarin’s underlying execution model has a built-in rule for generating instances
of Fr(x) facts, and also ensures that each instance produces a term (instantiating x)
that is different from all others.” (The Tamarin Team, 2019, pg. 42).

It is reasonable to assert this property of the Fr fact for the sake of the symbolic
model. Furthermore, collisions of randomly chosen elements in most cases have neg-
ligible probability and do not give an adversary any non-negligible advantage. How-
ever, one should keep in mind that this makes it impossible for Tamarin-Prover to detect
insecure pseudo-random generators, for instance, because said property assumes the
used pseudo-random generator to be absolutely secure. Again, most likely this is not a

16

2. Tamarin-Prover

problem because Tamarin-Prover’s security model treats cryptographic primitives as
secure black boxes anyway.

Diffie-Hellman exponentiation was one of the contributions of Meier (2013). One
can implement exponentiation rules by introducing an exp function symbol of arity
2. Expecting a base in the first entry and an exponent in the second. For a proper
semantic, the exponentiation laws must also be given, e.g.

exp(exp(a,b),c) = exp(a,mult(b,c))

where mult represents multiplication, etc. Since Diffie-Hellman exponentiation is
implemented in Tamarin-Prover exactly this way but also giving the exponentiation
operator ^ as syntactic sugar it is advisable to use it as is.

Pseudo-Random Functions and Key Derivation Functions

Pseudo-random functions are used frequently in IPsec. For instance, the computation
of an quantity called SKEYSEED relies on a negotiated pseudo-random function. From
SKEYSEED all keys for the authentication phase of the key exchange are derived (Kauf-
man et al., 2014, sec. 1.2). Considering this we see that pseudo-random functions play
a major role and their security is crucial.

In Tamarin-Prover there is only one way to represent cryptographic primitives and
thus also pseudo-random functions. We have to define a function symbol for every
such functions. For keyed pseudo-random functions, we would define them with arity
two–one entry for the key and one entry for the input data:

functions: prf/2

The previous code defines a keyed pseudo-random function.
When defined this way, pseudo-random functions are idealized in the sense that a

priori they do not have collisions. This is because in the symbolic model two dif-
ferent terms applied to the same function symbol yield two different terms again un-
less some explicitly defined equation demands otherwise. This makes Tamarin-Prover
blind to some attacks which produce collisions and to attacks relying on a collision
attack against the pseudo-random function.

Therefore, only pseudo-random functions which are considered to be secure should
be analysed in Tamarin-Prover. Otherwise, the result Tamarin-Prover returns cannot
be trusted.

The same holds for key derivation functions which are also defined using function
symbols. For instance, in IPsec the quantity SKEYSEED is used to derive several keys
for the initiator and the responder. In Tamarin-Prover, we can implement this by defin-
ing function symbols. Either one can define a key derivation function symbol with
two entries–then the first entry might be used to determine which key is derived–or

17

2. Tamarin-Prover

one defines multiple function symbols, one for each quantity derived from SKEYSEED.
For the sake of code readability, we decided to define multiple function symbols.

Finally, there is another idealization which probably should be taken into account
when it comes to function symbols, be it for pseudo-random functions or others. As
said before, Tamarin-Prover handles cryptographic messages and inputs not as bit
strings but as terms. Since terms are just symbols they do not have a length associated
with them. This makes it more complicated to implement cipher suite negotiation.
This is because in this case there might be two different protocol instances having ne-
gotiated different cipher suites. When the attacker decides in this situation to redirect
messages from one protocol instance to another one, this might be detected in practice
because the length requirements of the pseudo-random functions are not met in the
other protocol instance. However, Tamarin-Prover does not have a notion of message
length and would not detect this. This leaves two options: First, one accepts that in
this case Tamarin-Prover does not accurately reflect the real scenario. At least, this
makes the attacker stronger because he gets away with more than he should making
this option conceivable. Second, one makes an effort to adjust the implementation so
that Tamarin-Prover takes the message length into account. The latter proved to not be
an easy task which is why we decided to take the first route.

Signature Schemes

A signature scheme Π consists of three algorithms: a key generator KeyGen, a signing
algorithm Sign which signs messages and a verification algorithm Vrfy which checks
a given signature and verifies or falsifies it for the signed document. For correctness,
we require that

Vrfy(pk, 𝑚, Sign(sk, 𝑚)) = true (1)

for every message 𝑚 and every secret and public key pair (sk, pk). In other words, a
signature for message 𝑚 created using the secret key sk should verify when checked
against the corresponding public key pk.

As before, we implement the cryptographic primitives as function symbols. There-
fore, we write

4 functions: sign/2, verify/3, pk/1, true/0

to define the signing and the verification algorithms. pk is a function symbol mapping
a secret key to the corresponding public key and true is a 0-ary function symbol, i.e.,
a constant, representing the return value of verify when a signature is verified to be
correct. Equation 1 can now be translated into Tamarin-Prover’s language as follows:

6 equations: verify(pk(sk),m,sign(sk,m)) = true

18

2. Tamarin-Prover

Now, we have to deal with signature checking. Tamarin-Prover does not support
if-statements controlling the conclusion facts depending on some condition on the
premise facts, for instance. However, this is needed for signature checking because
a party of a protocol instance might stop communicating when a signature does not
verify but otherwise compile an appropriate answer message. We found that this can
be solved in Tamarin-Prover in two possible ways:

In the first approach, one might write two rules having the same premise facts except
for differing in the expected signature checking value. In particular, both rules expect
the same protocol party’s state. Now, one rule represents the case when the signature
is evaluated to be invalid and leads into a failure state from which a protocol instance
cannot be recovered. The second rule represents the case when the signature is eval-
uated to be valid and proceeds with the protocol. However, we found this approach
overly complicated because it requires an additional axiom introducing a false value
and it requires to be very careful about how this is handled. Therefore, we decided to
use the following method which we believe to be equivalent in its effect.

In the second approach, one makes use of a language feature called restrictions. Us-
ing restrictions one can instruct Tamarin-Prover to disregard certain traces depending
on the action facts. Let’s consider, we write the following restriction:

8 restriction Equality:
9 ”All x y #i. Eq(x, y) @#i ==> x = y”

Then at every moment #i and for every entities x and y when the action fact Eq(x,y)
arises, we require that x and y coincide. Otherwise, the whole trace is disregarded.

A rule using this method for signature checking might look as follows:

27 rule B_recv:
28 [!Pk(A, pk),
29 In(<A, n, signature>)]
30 --[Eq(verify(pk, n, signature), true),
31 Verified(A, n)]->
32 []

This rule cannot be applied when the signature of n does not verify against the pub-
lic key pk because then the action fact Eq(verify(pk, n, signature), true)
does not satisfy the restriction and a corresponding trace would be disregarded as a
whole.

This approach has the advantage to shift the signature checking from premise and
conclusion facts to action facts which is an area the attacker does not have any control
over. This is desired because a malicious attacker might manipulate the signature of the
message or the message itself but as soon as both arrived at the recipient in the protocol
instance the attacker is not able to manipulate the signature checking algorithm. Hence,
this reflects reality more accurately than the earlier approach.

19

2. Tamarin-Prover

We implemented an exemplary protocol using signature checking: Alice sends a
signed nonce to Bob who checks the signature. The code for this toy example can be
found in appendix B.

Authenticated Encryption Schemes and Certificates

The implementation of the authentication phase of IKEv2 in IPsec went beyond the
scope of our lab. Nevertheless, we want to discuss authenticated encryption schemes
and certificates which are relevant for the authentication phase of IKEv2 very briefly.
What follows, however, should not be seen as an experiential report but as a theoretical
remark since we did not implement the ideas.

As explained earlier, the Out and In facts are for message sending and receiving.
Everything sent using these facts can be manipulated by the attacker who also obtains
knowledge about everything in those facts. Additionally, Tamarin-Prover also pro-
vides an authenticated channel with corresponding Out_A and In_A facts. While the
attacker also obtains knowledge about everything sent over this channel, he does not
have the ability to manipulate the messages. This again is handled by the message de-
duction rules. Sending a ciphertext via this channel might be seen as an authenticated
encryption. However, this does not reflect the real scenario accurately. Therefore, we
would advice against choosing this route.

However, from the earlier discussion one might already get the impression how an
authenticated encryption might be implemented. An encrypt-then-authenticate (EtA)
mechanism could easily be implemented by using function symbols and restrictions
as demonstrated before. This can be used for an initial step towards implementing
authenticated encryption. Nonetheless, for the sake of cipher suite negotiation, i.e.
independence of the choice of cryptographic primitive, it is necessary to generalize
this mechanism.

When it comes to certificates they are basically a collection of identities, public keys,
signatures, and possibly some additional information and references like the applied
algorithms. One of the most common formats of certificates is the X.509 standard
(Cooper et al., 2008). Since this is mainly a concern of data organization it is very
likely that this format could be implemented in Tamarin-Prover or at least to a very
large degree. It should also be possible to implement a public key infrastructure with
certification authorities issuing certificates using labeled rewriting rules and restric-
tions ensuring the validation of certificates.

An implementation of the X.509 standard is of high utility for Tamarin-Prover in
general because of the wide spreading of it. A well-designed implementation of the
X.509 standard could be reused in the analyses of lots of protocols using it.

Cremers et al. (2017) used the public key as a certificate in rev21 of their code.
The matching of identity to the public key was done via the structure of the messages

20

3. Towards an Automatic Analysis of IPsec

(Cremers et al., 2018).

3. Towards an Automatic Analysis of IPsec
Before we dive into the implementation and analysis of the initialization phase of
IKEv2 in IPsec we briefly describe the key exchange protocol (Kaufman et al., 2014).
Simply put, one can divide IKEv2 into two phases: an initialization phase and an
authentication phase. The purpose of the initialization phase is to execute a Diffie-
Hellman key exchange between initiator/client and responder/server in order to derive
a quantity called SKEYSEED. This in turn is used to derive keys to secure the authen-
tication phase with authenticated encryption. The authentication phase–as the name
suggests–is done to authenticate client and/or server using their certificates and to de-
rive key material KEYMAT which is then used to encrypt the further communication
between the involved parties.

When the initiator decides to establish a connection to the responder, she starts the
initialization phase by sending the first message 𝑚1 = ⟨Hdr, SAi1, KEi, Ni⟩:

• The header Hdr contains the “security parameter indices (SPIs), version num-
bers, Exchange type, Message ID, and flags of various sorts” (Kaufman et al.,
2014). Simply put, the security parameter index identifies a connection.

• The first security association of the initiator SAi1 lists the supported algorithms
for encryption/decryption, authentication, pseudo-random functions, groups for
the Diffie-Hellman key exchange, and a pseudo-random function.

• The key exchange material of the initiator KEi contains a randomly chosen ex-
ponent after the initiator guessed the cipher suite negotiation for the responder.

• A randomly chosen nonce Ni to be used in the key derivation and authentication.
When the responder receives the message 𝑚1 he first checks whether the guessed ci-
pher suite negotiation is supported or not. Afterwards, he compiles a message 𝑚2 =
⟨Hdr, SAr1, KEr, Nr, CERTREQ⟩:

• The header Hdr is built as described before.
• SAr1 now contains the chosen algorithms which concludes the cipher suite ne-

gotiation.
• KEr contains the key exchange material of the responder, e.g. a randomly chosen

exponent in the chosen group.
• Nr is the nonce of the responder.

After 𝑚1 and 𝑚2 are exchanged, both derive SKEYSEED = prf(Ni|Nr, DH) where DH
is the shared secret from the Diffie-Hellman key exchange and prf denotes the chosen
pseudo-random function. This concludes the initialization phase.

Since we did not implement the authentication phase, we omit a detailed description
for the sake of simplicity. More details on this part of the protocol can be obtained from

21

3. Towards an Automatic Analysis of IPsec

Kaufman et al. (2014).

3.1. Finite State Machine of IKEv2 Initialization Phase
For our implementation of the IKEv2 initialization phase, we decided on the finite state
machine depicted in figure 2. Our code is available online via GitHub (Stadtländer,
2019).

∅

𝐼1

𝐼2

𝐼3

𝑅1

𝑅2

𝑅3

in
it
_s
en
d

init_accept

init_keyderiv

𝑚1 = ⟨Hdr, SAi1, KEi, Ni⟩

𝑚2 = ⟨Hdr, SAr1, KEr, Nr, CertReq⟩

resp_accept

resp_send

resp_keyderiv

Figure 2: Finite state machine of the initialization phase of IKEv2 (failure states omit-
ted)

Both the responder and the initiator start off in an empty state. The state as we im-
plemented it is initialized with 0 and contains fields for all quantities relevant for the
key exchange: roles, identifiers, security parameter indices, Diffie-Hellman parame-
ters, nonces and derived keys. Once the initiator decides to send the first message 𝑚1,
the rule IKE_SA_INIT_initiator_send is applied. Note that all rule names are
abbreviated in figure 2 for a better visualization. As conclusion facts of the rule, the
state State_I1 of the initiator and an Out fact with the outgoing message are created.

The rule IKE_SA_INIT_responder_accept_g1 is meant to accept the message
coming from the initiator choosing group element g1. This also produces a state
State_R1 for the responder. However, when the initiator did not choose g1 as a group

22

3. Towards an Automatic Analysis of IPsec

element, the only option is to apply the rule IKE_SA_INIT_responder_reject
which creates a failure state State_RX.

When the state State_R1 is present, the rule IKE_SA_INIT_responder_send
can be applied to compose and send message 𝑚2 and to create the following responder
state State_R2.

The initiator receives message 𝑚2 when rule IKE_SA_INIT_initiator_accept
is applied. She transitions into the following state State_I2. In states State_I2 and
State_R2 both can use the data in the states to derive SKEYSEED.

Note that along the state transitions we described above, all kinds of sanity checks
are performed to ensure that everything is as negotiated, for instance.

3.2. Implementation Details
We want to give a brief overview over the structure of the code and some additional
details to our implementation of the initialization phase of IKEv2.

Since Tamarin-Prover by nature does not support security protocol theories to be
spread over several files, i.e. there is no such thing as an include command, we made
use of the m4 macro preprocessor inspired by Cremers et al. (2017). The root file is
ipsec.m4. Then we have the following files:

• state.m4i defining the macros and settings connected to the states of the ini-
tiator and the responder.

• restrictions.m4i contains all restrictions used in our code. In particular,
the equality restriction we already described in the context of signature schemes
in section 2.2.

• pki.m4i describes the the public key infrastructure. In our case, this is the
identity creation.

• attacker.m4i contains the means of the attacker: currently, this is a corrupt
oracle which can be used to reveal the long-term secret of the identities.

• model_initiator.m4i and model_responder.m4i contain the rules for
the initiator and the responder, respectively.

• Finally, lemmas.m4i states the lemmata about the key exchange to be analysed
by Tamarin-Prover.

The states of the initiator and the responder are of the same format. They both
contain the role (initiator or responder), identifiers of the respective parties, security
parameter indices, Diffie-Hellman parameters/keys/secrets, nonces and the derived
keys. Therefore, we used the same macros for creating, reading, updating and writ-
ing states for both: A init_state macro was used to create a null-initialized state,
a set_state macro was used to parse the previous state from the premise facts to
the current variables, and a next_state macro was used to write the new state to the
conclusion facts. The skeleton of a rule for the initiator thus looked as follows:

23

3. Towards an Automatic Analysis of IPsec

1 rule IKE_SA_INIT_initiator_*:
2 let
3 set_state()
4 /* ... */
5 in
6 [State_Ix(prev_state())
7 /* ... */]
8 -->
9 [State_Iy(next_state())

10 /* ... */]

This procedure enabled us to only describe the differences of the state in the transition
instead of listing every field in the state explicitly. This makes the code more robust
against mistakes and improves the readability thereof.

We implemented a very rudimentary version of the IPsec key exchange, so far. In
particular, we do not support real cipher suite negotiation: While the initiator is pro-
grammed to offer two group elements in the Diffie-Hellman key exchange, the respon-
der only supports one of them, called g1.

3.3. Lemmata and Results
We analysed two lemmata for the initialization phase of IKEv2. The first being called
honest_init. Similar to what we did for the Diffie-Hellman key exchange in sec-
tion 2.1, this lemma checks whether or not it is possible to execute the protocol with
honest parties so that both parties derive the same keys. This can be seen as a sanity
check for the implementation and indeed was verified by Tamarin-Prover.

The other lemma we stated deals with the question whether or not the security pa-
rameter index as a sole identification for the connection is secure: Can an attacker
create a situation where two parties have the same pair of security parameter indices
but derive different secrete keys? We stated the lemma as follows:

1 lemma security_parameter_not_secure:
2 exists-trace
3 ”
4 Ex SPIi SPIr SK1 SK2 #i #j .
5 (
6 ResponderKeyDerived(SPIi, SPIr, SK1) @ #i &
7 InitiatorKeyDerived(SPIi, SPIr, SK2) @ #j &
8 not(SK1 = SK2)
9)

10 ”

and Tamarin-Prover verified it as well. According to the constraint system obtained
from Tamarin-Prover’s interactive mode the attacker achieves this by doing the follow-

24

4. Discussion

ing: He impersonates the initiator by using the security parameter index sent by the
initiator but choosing every other parameter in the message sent to the responder.

This motivates the authentication phase of IPsec’s key exchange and in particular
the signing of the early message 𝑚1 and the received nonce. The changes made by the
attacker would be detected there causing the party to abort the protocol.

4. Discussion
4.1. Tamarin-Prover’s Security Model
 We stated in the introduction that we wanted to evaluate Tamarin-Prover’s suitability
to analyse the security of large protocols suites such as IPsec. More generally, we
wanted to evaluate the question “Can Tamarin-Prover improve the trustworthiness of
cryptographic protocols”.

According to our lab experiences, the answer to this question is a conditional yes.
Tamarin-Prover does not give an absolute notion of security but more like an own
category of Tamarin-security, say “This protocol is Tamarin-secure”.

The reason for this lies in the Dolev-Yao attack model as well as the symbolic model
in which Tamarin-Prover operates. The Dolev-Yao attack model implements an at-
tacker who

1. controls the network traffic, i.e. may intercept, manipulate, and redirect mes-
sages, and

2. has access to a reveal oracle, i.e. can obtain the long-term secrets of all involved
parties.

Via the message deduction rules and the way in which In and Out facts are intertwined
with the message deduction rules Tamarin-Prover indeed implements a Dolev-Yao at-
tacker. However, the reveal oracle has to be implemented by the user. While this gives
the flexibility of tweaking the Dolev-Yao attack model as needed, it adds additional
effort on the user-side which may be prone to mistakes or improper implementation.

Since Tamarin-Prover sees cryptographic messages not as binary strings but as terms
over a term algebra and cryptographic primitives not as algorithms but as function sym-
bols, it does not work in the well-known computational model similar to the perspective
of EasyCrypt but it has its own model the authors refer to as the symbolic model. This
determines the security which Tamarin-Prover analyses: It is blindfold with respect
to more fine-grained attacks like collision attacks against pseudo-random functions or
also against Bleichenbacher-type attacks as we have seen in section 2.2.

Moreover, Tamarin-Prover is also blindfold with respect to practical attacks like
DDoS as argued in the context of the Diffie-Hellman key exchange protocol, sec-
tion 2.1.

25

5. Conclusion and Future Work

4.2. Practical Limitations of Tamarin-Prover
However, Tamarin-Prover also has some practical limitations. The particular syntax it
uses to implement protocols and lemmata make it very difficult to translate the desired
security properties from the established mathematical notions into the symbolic model.

The backwards reachability analysis underpinning Tamarin-Prover may a) create ex-
ponentially many paths with respect to the number of constraints to be solved and b)
prevent Tamarin-Prover from terminating because the underlying statement verifica-
tion problem is undecidable. Thus, memory and running time necessary to analyse
cryptographic protocols with Tamarin-Prover may become a serious bottleneck.

4.3. Strengths of Tamarin-Prover
But this does not render Tamarin-Prover being useless. The symbolic model shines
for what it was made for: interaction attacks. Interaction attacks exploit the ways in
which the cryptographic primitives and concurrently executed protocol instances in-
teract, hence the name. A well-known type of interaction attacks are replay attacks
where a malicious adversary may impersonate another identity by replaying already
sent messages to the server.

This explains why the symbolic model of Tamarin-Prover is such a good fit for de-
tecting this type of attacks: First, the symbolic model treats all primitives as function
symbols, i.e. black boxes which are agnostic about their implementation or the format
of the messages. This simplification makes it possible for Tamarin-Prover to reason
about how the rules, function symbols and terms behave when they are plugged to-
gether in unintended ways. Second, Tamarin-Prover supports unbounded parallel exe-
cution of arbitrarily many protocol instances (Meier, 2013). These two ingredients are
tailored to interaction attacks.

5. Conclusion and Future Work
After having implemented the initialization phase of the key exchange protocol used
in IPsec there are several routes open for future work. First, the negotiation of cipher
suites was not implemented in our code. Second, after the initialization phase comes
the authentication phase as a crucial part of the key exchange. Also, the corresponding
security properties need to be analysed. Third, we did not implement certificates. It is
potentially useful for many protocols if there was an implementation of a formatting
standard of certificates such as X.509.

However, Tamarin-Prover does not provide language features for code re-usability,
e.g. there is no include command. This is one practical aspect of improving Tamarin-
Prover making it possible to easily extend implementations of other users, e.g. includ-

26

References

ing the X.509 implementation mentioned before. Another aspect would be to introduce
some kind of unit testing for rules to Tamarin-Prover’s language to prevent implemen-
tation mistakes and reduce the gap between protocol specification and implementation
even further.

In conclusion, we can say that Tamarin-Prover proved itself being very useful for
analysing the security of protocols used in large-scale multi-party networks. It is not
suited for analysing cryptographic primitives since they are treated as black boxes in
the symbolic model. The symbolic model appears to be only appropriate to detect
interaction attacks. Therefore, the results gained from Tamarin-Prover should not be
taken as a sole measure of a protocol’s security. The security notion it represents can
be a very good complementary layer of trust additional to other means of analysis, e.g.
by security proofs by hand or other automatic analyses. Particularly, due to the nature
of the symbolic model, the used cryptographic primitives should be very carefully
analysed beforehand because Tamarin-Prover implicitly assumes their security. Apart
from this constraint, we found Tamarin-Prover suited and useful as an analysis tool
even for large protocols like TLS or IPsec.

References
Basin, David, Cas Cremers, Jannik Dreier, Simon Meier, Ralf Sasse, and Benedikt

Schmidt (Mar. 10, 2014). Tamarin Prover. url: https://tamarin-prover.
github.io/ (visited on Jan. 18, 2019).

Bhargavan, Karthikeyan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and
Pierre-Yves Strub (2013). “Implementing TLS with verified cryptographic secu-
rity”. In: IEEE Symposium on Security and Privacy. IEEE, pp. 445–459.

Bhargavan, Karthikeyan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Santiago Zanella-Béguelin (2014). “Proving the TLS Handshake
Secure (as it is)”. In: Advances in Cryptology – CRYPTO 2014. Ed. by Juan A. Garay
and Rosario Gennaro. Springer Berlin Heidelberg, pp. 235–255. url: https://
eprint.iacr.org/2014/182 (visited on May 13, 2018).

Bleichenbacher, Daniel (1998). “Chosen ciphertext attacks against protocols based on
the RSA encryption standard PKCS#1”. In: Advances in Cryptology — CRYPTO
’98. Ed. by Hugo Krawczyk. Springer Berlin Heidelberg, pp. 1–12.

Blum, Norbert (Aug. 11, 2017). “A Solution of the P versus NP Problem”. In: arXiv
e-prints. Withdrawn. arXiv: 1708.03486v2 [cs.CC]. url: http://arxiv.
org/abs/1708.03486 (visited on Jan. 18, 2019).

Cooper, D., S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk (2008). In-
ternet X.509 Public Key Infrastructure Certificate and Certificate Revocation List

27

https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://eprint.iacr.org/2014/182
https://eprint.iacr.org/2014/182
http://arxiv.org/abs/1708.03486v2
http://arxiv.org/abs/1708.03486
http://arxiv.org/abs/1708.03486

References

(CRL) Profile. RFC 5280. RFC Editor. url: http://www.rfc- editor.
org/rfc/rfc5280.txt (visited on Feb. 2, 2019).

Cremers, Cas, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der Merwe
(2017). “A Comprehensive Symbolic Analysis of TLS 1.3”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’17. ACM, pp. 1773–1788. url: http://doi.acm.org/10.1145/
3133956.3134063.

– (Sept. 27, 2018). TLS13Tamarin. url:https://github.com/tls13tamarin/
TLS13Tamarin (visited on Feb. 2, 2019).

Durumeric, Zakir, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Math-
ias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex
Halderman (2014). “The Matter of Heartbleed”. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference. IMC ’14. Vancouver, BC, Canada:
ACM, pp. 475–488. url: http://doi.acm.org/10.1145/2663716.
2663755 (visited on Jan. 17, 2019).

Gonthier, Georges (2008). “Formal proof–the four-color theorem”. In: Notices of the
AMS 55.11, pp. 1382–1393.

IMDEA Software Institute (2009). EasyCrypt. url: https://www.easycrypt.
info (visited on Jan. 18, 2019).

Kaufman, C., P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen (2014). Internet Key Ex-
change Protocol Version 2 (IKEv2). RFC 7296. RFC Editor. url: http://www.
rfc-editor.org/rfc/rfc7296.txt (visited on Feb. 1, 2019).

Lindell, Yehuda and Jonathan Katz (2014). Introduction to Modern Cryptography.
2nd ed. Chapman and Hall/CRC.

Meier, Simon (2013). “Advancing automated security protocol verification”. Disser-
tation. ETH Zürich.

MITRE, ed. (Dec. 3, 2013). CVE-2014-0160. CVE-ID. url: http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2014-0160 (visited on Jan. 17,
2019).

Mochizuki, Sinichi (June 28, 2018). Inter-universal Teichmüller Theory I-IV. url:
http : / / www . kurims . kyoto - u . ac . jp / ~motizuki / papers -
english.html (visited on Jan. 18, 2019).

Nussbaumer, Jakob and Michael Nüsken (2018). “Cryptographic Game-style language
in EasyCrypt”. In: crypto day matters 29. Ed. by Christopher Huth and Michael
Nüsken. Bonn: Gesellschaft für Informatik e.V. / FG KRYPTO.

Opfer, Gerhard (2011). “An Analytic Approach to the Collatz 3n+1 Problem”. In:
Hamburger Beiträge zur Angewandten Mathematik 9.

Schmidt, Benedikt (2012). “Formal analysis of key exchange protocols and physical
protocols”. Dissertation. ETH Zürich.

28

http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
http://doi.acm.org/10.1145/3133956.3134063
http://doi.acm.org/10.1145/3133956.3134063
https://github.com/tls13tamarin/TLS13Tamarin
https://github.com/tls13tamarin/TLS13Tamarin
http://doi.acm.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/2663716.2663755
https://www.easycrypt.info
https://www.easycrypt.info
http://www.rfc-editor.org/rfc/rfc7296.txt
http://www.rfc-editor.org/rfc/rfc7296.txt
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html

A. Code of the Introductory Example

Stadtländer, Eike (Feb. 2, 2019). IPsecTamarin. url: https://github.com/
estadtlaender/IPsecTamarin (visited on Feb. 2, 2019).

The F* Team (2019). Verified Programming in F*. A tutorial. English. MSR-Inria.
url: https://www.fstar-lang.org/tutorial/ (visited on Jan. 24,
2019).

The Tamarin Team (Jan. 18, 2019). Tamarin-Prover Manual. Security Protocol Anal-
ysis in the Symbolic Model. url: https://tamarin-prover.github.io/
manual/tex/tamarin-manual.pdf (visited on Jan. 25, 2019).

Wong, David (June 14, 2017). Tamarin Prover Introduction. url: https://www.
youtube.com/watch?v=XptJG19hDcQ (visited on Jan. 24, 2019).

A. Code of the Introductory Example
The following is the full source code of the introductory example described in sec-
tion 2.1. This might be stored in a file called DHKE.spthy and analysed with Tamarin-
Prover by calling tamarin-prover --prove DHKE.spthy:

1 theory DHKE
2 begin
3

4 builtins: diffie-hellman
5

6 rule create_identity:
7 [] --> [!Id($C)]
8

9 rule client_hello:
10 let
11 A = 'g'^~a
12 in
13 [!Id($C), !Id($S), Fr(~a)]
14 -->
15 [ClientWaiting($C, $S, ~a),
16 Out(<'client_hello', $C, $S, A>)]
17

18 rule server_receive_hello:
19 let
20 B = 'g'^~b
21 secret = A^~b
22 in
23 [!Id($S), !Id(C),
24 In(<'client_hello', C, $S, A>),
25 Fr(~b)]
26 --[ServerCreatedSession(C, $S, secret)]->

29

https://github.com/estadtlaender/IPsecTamarin
https://github.com/estadtlaender/IPsecTamarin
https://www.fstar-lang.org/tutorial/
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf
https://www.youtube.com/watch?v=XptJG19hDcQ
https://www.youtube.com/watch?v=XptJG19hDcQ

B. Code of the Signature Scheme Example

27 [ServerSession(C, $S, secret),
28 Out(<'server_hello', C, $S, B>)]
29

30 rule client_receive_hello:
31 let
32 secret = B^~a
33 in
34 [!Id($C), !Id(S),
35 ClientWaiting($C, S, ~a),
36 In(<'server_hello', $C, S, B>)]
37 --[ClientCreatedSession($C, S, secret)]->
38 [ClientSession($C, S, secret)]
39

40 lemma can_be_run:
41 exists-trace
42 ”
43 (Ex C S secret #i #j .
44 (ServerCreatedSession(C, S, secret) @ #i) &
45 (ClientCreatedSession(C, S, secret) @ #j))
46 ”
47

48 lemma man_in_the_middle:
49 all-traces
50 ”
51 All C S secret1 secret2 #i #j .
52 (
53 ServerCreatedSession(C, S, secret2) @ #j &
54 ClientCreatedSession(C, S, secret1) @ #i &
55 #j < #i &
56 not(C = S)
57)
58 ==>
59 (not(Ex #k1 #k2 .
60 K(secret1) @ #k1 &
61 K(secret2) @ #k2))
62 ”
63

64 end

B. Code of the Signature Scheme Example
The following security protocol theory implements a protocol which uses signature
checking as described in section 2.2. For the protocol, we assume to have a public
key infrastructure so that every party has uncompromised access to a public key of

30

B. Code of the Signature Scheme Example

every identity. This is realized in the create_identity rule. However, following
the Dolev-Yao attack model, we provide a corrupt oracle to the attacker so that he
can obtain the secret long-term key of any identity in the public key infrastructure by
applying the rule corrupt.

The actual protocol works as follows: Alice chooses a nonce n randomly, signs it
using her private key and sends a message containing her identity, the nonce and the
signature to Bob. Upon receiving, Bob checks the signature of Alice and either verifies
or falsifies the incoming message.

The lemma–which is verified by Tamarin-Prover–states that whenever Bob verifies
a message from Alice, either the attacker used the corrupt oracle or Alice indeed sent
the message.

1 theory SimpleAuth
2 begin
3

4 functions: sign/2, verify/3, pk/1, true/0
5

6 equations: verify(pk(sk), m, sign(sk, m)) = true
7

8 restriction Equality:
9 ”All x y #i. Eq(x, y) @#i ==> x = y”

10

11 rule create_identity:
12 [Fr(~ltkI)]
13 -->
14 [!Id($I, ~ltkI), !Pk($I, pk(~ltkI)),
15 Out(pk(~ltkI))]
16

17 rule corrupt:
18 [!Id($I, ~ltkI)]
19 --[Corrupted($I)]->
20 [Out(~ltkI)]
21

22 rule A_send:
23 [Fr(~n), !Id(A, ltkI)]
24 --[Sent(A, ~n)]->
25 [Out(<A, ~n, sign(ltkI, ~n)>)]
26

27 rule B_recv:
28 [!Pk(A, pk),
29 In(<A, n, signature>)]
30 --[Eq(verify(pk, n, signature), true),
31 Verified(A, n)]->
32 []

31

B. Code of the Signature Scheme Example

33

34 lemma authenticity:
35 all-traces
36 ”
37 All A n #i.
38 (
39 Verified(A, n) @ #i
40 ==>
41 (
42 (Ex #j . (Sent(A, n) @ #j & #j < #i)) |
43 (Ex #k . (Corrupted(A) @ #k & #k < #i))
44)
45)
46 ”
47

48 end

32

	Introduction
	Motivation and Relevance
	Related Work
	Our Contribution

	Tamarin-Prover
	An Introductory Example
	Building Blocks for Cryptographic Protocols

	Towards an Automatic Analysis of IPsec
	Finite State Machine of IKEv2 Initialization Phase
	Implementation Details
	Lemmata and Results

	Discussion
	Tamarin-Prover's Security Model
	Practical Limitations of Tamarin-Prover
	Strengths of Tamarin-Prover

	Conclusion and Future Work
	References
	Code of the Introductory Example
	Code of the Signature Scheme Example

