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1. Introduction

Mathematical proofs are difficult to verify by a human and even those verifications are error
prone. This issue is everlasting and problematic in the field of cryptography. For this
reason automatic provers and computer-aided toolsets are on the rise to achieve irrevocable
verifications. Our goal is to have a computer-checked security proof for IPsec. For TLS
this was already done in a project called miTLS (see Microsoft, Inria, and the Joint Centre,
2014a). They have verified a security proof for the TLS handshake (see Bhargavan, Fournet,
Kohlweiss, Pironti, Strub, and Zanella-Béguelin, 2014). Inspired by this we use the same
computer-aided toolset, EasyCrypt (see Institute, Inria, and École Polytechnique, 2014),
which is suited for cryptographic proofs.
We focus on a specific security aspect of the authenticated key exchange (AKE) model for
IPsec, namely the real-or-random scenario. This means that we check if it is possible to
distinguish between a randomly generated key and an exchanged key. We use the proof in
progress by Heussen, Loebenberger, and Nüsken (2017), reformulate and implement it in
EasyCrypt. This yields a computer checked proof for IPsec with more restrictions compared
to a proof done manually. Furthermore this work presents general difficulties and limitations
in the usage of EasyCrypt.

1.1. IPsec

IPsec is a network protocol suite that enables authentication and encryption of data sent over
an internet protocol network. Currently it is mainly used in virtual private networks (VPN).
Considering the Open System Interconnection model (OSI), the communication over the
internet is divided into seven different layers. IPsec operates at the Network layer, whereas
other widespread used internet security systems like TLS and SSH operate at the Application
layer. Generally speaking, IPsec has an advantage at establishing site-to-site conncetions
compared to TLS. This is due to the fact that IPsec is better suited to situations where a
remote client should behave as if they were locally attached to the network.
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1.2. Related Work

The AKE model is a security model, which is used to check if a protocol is able to establish
a secure channel for communication between two parties. One of the most talked about
protocols is TLS. Since it is similar to IPsec, we first look at the security proofs for TLS.
Note that it was impossible to prove security by using well-established security models like
AKE. This is due to the fact that the key that is authenticated is the same that is used later
on for the communication. This leaks information about the key considering the AKE model.
The first security analysis of the unmodified TLS was done by Jager, Kohlar, Schäge, and
Schwenk (2013). They introduce the notation for authenticated and confidential channel
establishment (ACCE), an extension of the AKE notation. It is needed to show practical
security for TLS-like protocols. Within the ACCE model they prove the TLS-DHE ciphersuite
to be secure. Building up on this, Kohlar, Schäge, and Schwenk (2013) shows that the rest
of the ciphersuites are ACCE secure too. Apart from that they reformulate the ACCE security
notation for sever-only authentication. They then show that this security property holds
for all TLS handshake families. This is the first time that the complete protocol TLS has
shown to be secure. Building upon that, Li, Schäge, Yang, Kohlar, and Schwenk (2015)
give a definition of ACCE security for authentication protocols with pre-shared keys. They
present a renewed version of the ACCE model from Jager et al. (2013) that includes most
recent attacks. Since this is the newest work, we focus on this ACCE model to include every
attack known up to their work.
Looking at the security model introduced by Li et al. (2015), we see 6 different oracles,
used in two phases. The first phase establishes a common key, while the second uses it for
communication. Since the ACCE model is just an extension of the AKE model, we remove
those oracles that are used after the key exchange, to get back to the AKE model. We use
this method to use all the benefits and specific changes in security notation that the ACCE
model went through, to get an up-to-date AKE model, which covers modern attacks. By
doing that we then are left with the 4 oracles “Sendpre”, “RegisterParty”, “RevealKey” and
“Corrupt” needed during the establishment of the key. Those oracles and the AKE model are
explained later on in more detail.
After a full proof for TLS was presented, Krawczyk, Paterson, and Wee (2014) modularises
the protocol by extracting a key-encapsulation mechanism (KEM) on a variant of the ACCE
notion of Jager et al. (2013). This allows to analyse TLS in a modular fashion, meaning
that sufficient conditions on the KEM will lead to a ACCE secure TLS-protocol. Bhargavan,
Fournet, Kohlweiss, Pironti, Strub, and Zanella-Béguelin (2014) use a slightly different KEM
to show that TLS is secure. They also provide a reference implementation of TLS, which they
use to prove security with EasyCrypt (see Microsoft, Inria, and the Joint Centre, 2014a).
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1.3. Contribution

Ideally we will have the same procedure for IPsec as was done for TLS in the future. These are
a full proof, modularisation and a computer-verification. Even though IPsec was analyzed in
the past years, we are still missing a full security proof. Currently Heussen, Loebenberger,
and Nüsken (2017) are working on such a proof. They use game-style language similar
to Katz and Lindell (2016) and use the corresponding game-notation for AKE that fits the
description of Li, Schäge, Yang, Kohlar, and Schwenk (2015). They prove that IPsec fulfills
the security properties presented by the game AKE.
Building upon that this work focuses on the computer aided toolset EasyCrypt to generate
a computer-verified proof for the real-or-random (RORA) scenario of IPsec. This computer-
assisted proof relies heavily on the work of Heussen et al. (2017) and functions more as
an improvement compared to a completely new proof. The implementation needs a lot of
preparatory work in the theoretical framework. This involves a restructure of the AKE game
and the protocol, simplifying the game hops, and introducing a remodeled proof for the
RORA scenario. For simplicity, we assume that party-certification is mandatory. Since this
property is not used in the proof at any point, it is still secure without this assumption.
By using a computer tool like EasyCrypt this work sets a foundation towards an automated
proof for IPsec. Previous work from Microsoft, Inria, and the Joint Centre (2014a) cannot
be used, since it mainly focuses on the KEM, is not documented, and cannot be run by using
the current version of EasyCrypt. This is probably due to changed internal libraries from
EasyCrypt. For more information about this implementation, see Microsoft, Inria, and the
Joint Centre (2014b).
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2. Preliminaries

We use games to define security properties (see Katz and Lindell, 2016). This is done by
defining a game, where a successful attack towards the security property leads to winning
the game. Then we define an advantage towards that game. If the advantage of a game
is negligible, then this implies that the chance to successfully attack the security property
has to be negligible too. The main reason to use games for security notation is to apply the
Game Hopping Lemma. It allows to analyze one game through the properties of another
game. For an exact definition see section 2.4. In this chapter we present all necessary games
and security properties we need for the main theorem later on.

In the following we briefly recall the definitions and games needed in the upcoming proof
and implementation. We call the one playing a game adversary and denote him with A. The
adversary has access to everything but the long-term stored secret knowledge. Further on
we grant him access to oracles. They themselves use the secret knowledge without leaking
it to the adversary. Typically an oracle runs a scheme or protocol, or presents an ability we
want to assume the adversary has. A game consists of 3 phases. The first one prepares the
environment and sets up the games structure. The second prepares the hidden information
and the oracles, then calls the adversary. In the last phase the game checks if the adversary
won the game. We denote the advantage of a game G played by A as advG(A). We
present its exact definition at the end of every game. The advantage advG of a game is the
maximum advantage over all probabilistic polynomial time adversaries. We only consider
such adversaries from now on. If the advantage of a game is negligible, then we call it a
null-game. We denote with ∈R the uniformly random assignment and with ⊥ the empty
symbol, indicating that no information is passed.
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2.1. Game: PRF

The game PRF prepares an oracle OPRF that on input x either returns the keyed function
applied to x or randomly picks an output. The adversary has to guess after any number
of queries if he always got some random output or if the keyed function was used. If he is
not able to see any non-negligible difference, then the keyed function behaves similar to a
truly random function, thus we call it a pseudorandom function. Consequently we define a
pseudorandom function as a keyed function, such that the game PRF using this function has
negligible advantage.

Game: PRF
Parameter: A keyed function prf : K ×X → Z.
Input: Security parameters.
Output: ACCEPT or REJECT

1: Pick k ∈R K.
2: Pick hidden bit hPRF ∈R {0, 1}.
3: Construct oracle OPRF.

Oracle: OPRF

Input: x ∈ X
Output: z ∈ Z

1: If input has been seen then Return old answer
2: Else If hPRF = 0 then Return prf(k, x) ∈ Z
3: Else If hPRF = 1 then Return r ∈R Z

4: Call adversary A with input OPRF. Await guess h′ ∈ {0, 1}.
5: If h′ = hPRF then ACCEPT Else REJECT

Definition: We define the advantage of the game PRF for adversary A as

advPRF(A) =
∣∣∣∣Pr[A wins game PRF]− 1

2

∣∣∣∣ .
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2.2. Game: MP-PRF

The following game is the multi primitive version for pseudorandom functions. Its difference
to PRF is the set of functions, where the adversary is able to choose from. The advantage
for the game MP-PRF is bounded by the sum of the advantages for every function that the
adversary chooses from. Consequently if every function is secure in the sense of the game
PRF, we know that this game has negligible advantage.

Game: MP-PRF
Parameter: A set F of keyed functions prf : Kprf ×Xprf → Zprf.
Input: Security parameters.
Output: ACCEPT or REJECT

1: For each function prf ∈ F do
Pick a key kprf ∈R Kprf.

2: For each function prf ∈ F do
Pick a hidden bit hMP-PRF

prf ∈R {0, 1}.
3: Construct oracle OMP-PRF.

Oracle: OMP-PRF

Input: prf ∈ F , x ∈ Xprf

Output: z ∈ Zprf

1: If input has been seen then Return old answer
2: Else If hMP-PRF

prf = 0 then Return prf(k,w) ∈ Z
3: Else If hMP-PRF

prf = 1 then Return r ∈R Z

4: Call adversary A with input OMP-PRF. Await guess (h′, prf′) ∈ {0, 1} × F .
5: If h′ = hMP-PRF

prf′ then ACCEPT Else REJECT

Definition: We define the advantage of the game MP-PRF for adversary A as

advMP-PRF(A) =
∣∣∣∣Pr[A wins game MP-PRF]− 1

2

∣∣∣∣ .
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2.3. Game: MP-PRF*-OODH

The star-symbol in the name PRF∗ indicates that in contrary to the game PRF the input for the
keyed function is swapped. Analogous to the previous game, we look at the multi-primitive
version of a game called PRF∗-OODH. The idea is to formulate security of a Diffie-Hellman
key exchange, where the pseudorandom function is applied to the transmitted information.
Typically the Diffie-Hellman key exchange depends on the discrete logarithm problem. In
case of the game MP-PRF*-OODH it is more complicated and nowadays a commonly used se-
curity assumption. For more details towards this specifically, see Brendel, Fischlin, Günther,
and Janson (2017).

Game: MP-PRF*-OODH
Parameter: A set G of group data Γ = (G, g, q), where q is the order of g.

A set F of keyed functions prf : Kprf ×Xprf → Zprf.
Input: Security parameters.
Output: ACCEPT or REJECT

1: For each Γ = (G, g, q) ∈ G do
Choose aΓ, bΓ ∈R Zq.
Compute AΓ ← gaΓ , BΓ ← gbΓ and DHΓ ← gaΓbΓ .

2: For each Γ ∈ G and prf ∈ F do
pick a hidden bit hMP-PRF*-OODH

Γ,prf ∈R {0, 1}
3: Construct oracle OMP-PRF*-OODH

PRF .

Oracle: OMP-PRF*-OODH
PRF

Input: prf ∈ F ,Γ ∈ G, x ∈ Xprf

Output: z ∈ Zprf

1: If G * Kprf then Return ⊥

2: If input has been seen then Return old answer.
3: If hMP-PRF*-OODH

Γ,prf = 0 then
Return z ← prf(x, DHΓ).

4: Else Return z ∈R Z.
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4: Construct one-time oracle OMP-PRF*-OODH
LODH .

Oracle: OMP-PRF*-OODH
LODH

Input: prf ∈ F , Y ∈ Γ.G, x ∈ Xprf

Output: z ∈ Zprf

1: If G * Kprf then Return ⊥

2: If called before then Return ⊥
3: If Y = BΓ then Return ⊥
4: Return prf(x, Y aΓ)

5: Construct one-time oracle OMP-PRF*-OODH
RODH .

Oracle: OMP-PRF*-OODH
RODH

Input: prf ∈ F , X ∈ Γ.G, x ∈ Xprf

Output: z ∈ Zprf

1: If called before then Return ⊥
2: If X = AΓ then Return ⊥
3: Return prf(x,XbΓ)

6: Call adversary A with G,F , (AΓ)Γ∈G , (BΓ)Γ∈G and
oracles OMP-PRF*-OODH

PRF ,OMP-PRF*-OODH
LODH ,OMP-PRF*-OODH

RODH .
Await guess (Γ′, prf′, h′) ∈ G × F × {0, 1}.

7: If h′ = hMP-PRF*-OODH
Γ′,prf′ then ACCEPT

8: Else REJECT

Definition: We define the advantage of the game MP-PRF*-OODH for adversary A as

advMP-PRF*-OODH(A) =
∣∣∣∣Pr[A wins game MP-PRF*-OODH]− 1

2

∣∣∣∣ .
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2.4. Game Hopping Lemma

Consider a sequence of games [G0, G1, G2, . . . , Gn], where the advantages of each two con-
secutive games Gi, Gi+1 differ at most by εi,i+1. Then the first and last game differ at most
by the sum of ε:

advG − advGn ≤
∑

i=0,...,n−1
εi,i+1

Assume that all those differences of the games are negligible and the last game, Gn is a
null-game. Since the sum of negligible terms is again negligible, we know that the game
G has negligible advantage. Finding a game sequence that fulfills these assumptions is a
method to prove security notations in the game style language. Each two consecutive games
Gi, Gi+1 are called a game hop. With the Game Hopping Lemma we analyze the values
εi,i+1 for such a game hop. We present this lemma as defined by Heussen et al. (2017) and
omit cases not needed in the security proof.

Theorem 1: Game Hopping Lemma.

(i) Indistinguishability hop. Let G0 and G1 be two games which call the same adversary A.
Let D be a distinguisher that plays another game called G, where G hides a uniformly
random bit hG ∈ {0, 1} from D. We denote with D◦A the distinguisher D joining with
adversary A to play the game G. Then the Game Hopping Lemma states, if

A wins G0 iff D ◦ A wins G given hG = 0 (left side)

and

A wins G1 iff D ◦ A loses G given hG = 1 (right side)

are true, then

Pr[A wins G0]− Pr[A wins G1] ≤ 2 · advG(D ◦ A)

holds.

(ii) Large error hop. Let S0 and S1 represent the success events of two games G0 and
G1 respectively. Let E be a set that contains all cases where the two games differ, i.e.
S0 4 S1 ⊆ E.

If S0 and E are independent and Pr[S1|E] = 1/2, then∣∣∣∣Pr[S0]− 1
2

∣∣∣∣ = 1
Pr[¬E] ·

∣∣∣∣Pr[S1]− 1
2

∣∣∣∣ .
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The first case, the indistinguishability hop, is the most commonly used one. Since it is
difficult to show that the equations (left side) and (right side) hold on their own, the following
lemma simplifies its usage.

Lemma 1: Simplification of Game Hopping Lemma (Heussen et al., 2017).
In the situation of Game Hopping Lemma (i), the assumption on the events is implied if for
each hidden bit h∗ ∈ {0, 1} the following properties hold.

1. The view of A is identical whether interacting with Gh∗ or called by D playing game
G. Formally speaking, for each transcript T possibly seen by A we have

Pr[T is the transcript of A talking to D joined with G | hG = h∗].

= Pr[T is the transcript of A talking to Gh∗ | hG = h∗].

2. G accepts if and only if its hidden bit is guessed correctly.

3. For each transcript T of A, regardless of its probability, the answer of D is 0 if and
only if T wins Gh∗, and 1 otherwise.

We use this lemma to show that we can apply the Game Hopping Lemma for the upcoming
game hops.

2.5. Signatures

A signature scheme SIG consists of three algorithms. Namely the key generation SIG.Keygen,
the signing SIG.Sign and the verification of a signature SIG.Verify. The algorithm
SIG.Keygen randomly generates on input 1κ a keypair (pk, sk) in correspondence to the
security parameter κ. The key pk is used for public signature verification and the key sk is
used for signing. The algorithm SIG.Sign generates on input (sk, m) the signature s of m
using the signing key sk. The verification SIG.Verify returns on input (pk, m, s) true if s
is a valid signature for m and false otherwise.
Typically a signature scheme has to be EUF-CMA secure, meaning that no signature can be
forged. In our case we can omit this security assumption since we do not need it in the
upcoming proof.
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2.6. Authenticated Encryption

An authenticated symmetric encryption scheme AE consists of three algorithms. Namely
the key generation AE.Keygen, the encryption AE.Enc and the decryption of an encrypted
message AE.Dec. The algorithm AE.Keygen randomly generates on input 1κ a key k in
correspondence to the security parameter κ. Calling AE.Enc on input (k, Hdr, m) produces a
ciphertext c from the message m using the key k and potentially using additional information
Hdr. The algorithm AE.Dec computes on input (k, Hdr, c) the decryption of c using the key
k and checks the validity of it. This means if the decryption is not valid, then it returns a
failure, otherwise it returns the decrypted message m.
Normally we want an encryption scheme to be IND-CCA secure, meaning that even with
encryption and decryption oracles no difference between two encrypted messages can be
detected. In our case we can omit this security assumption since we do not need it in the
upcoming proof.

2.7. Security Assumptions

We do not need any security property for signatures or authenticated encryption schemes.
We assume each function prf and its corresponding function prf∗ to be a pseudorandom
function. For a pseudorandom function prf, we denote a function prf+ as a method to
obtain more output from prf. The exact definition is: prf+(K,S) = T1|T2| . . . |T255 with
T0 = prf(K,S|0 . . . 0|1) and Ti = prf(K,Ti−1|S|i) for i ∈ {1, . . . , 255}.
It is possible to show that as long as prf is a pseudorandom function, prf+ is also a pseu-
dorandom function. For simplicity, we assume that prf+ is a pseudorandom function on its
own.
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3. The Protocol: IPsec

In this section we go through each step during the key exchange of IPsec and explain those
in detail. To do that, we first have to define neccessary termonologies. Note that everytime
two parties use the protocol, for each a different protocol instance is created. Every protocol
instance is assigned a role, which are either Initiator or Responder. The Initiator starts
the communication and does not need any message as input. A protocol instance is assigned
the role of Responder if it starts upon receiving a message. Since we need to differentiate
between these two roles and want to check for the correctness of their communication, we
split every variable into two. This is indicated by the ending of a variable, where i stands for
the Initiator and r for the Responder. For example the shared key from Diffie-Hellman
key exchange DH is therefore split into DHi and DHr for the corresponding roles. Everytime
the protocol reads a message it is parsed. This checks for errors, like wrong message type
or incorrect addressee. We denote that this happens with parse and if an error is found,
the protocol aborts. Let π and π′ be two protocol instances. We define that π and π′

communicate with each other, if the following properties hold:
1. Both were instantiated, meaning that they already have a defined role and at least one

message was sent.
2. Every message received by π was sent by π′ and vice versa.

Following from this properties, we know that if π and π′ communicate, then each variable
that is used in the message was not altered.
Compared to (Heussen et al., 2017) we change the presentation of the protocol a bit. We
split the steps 5 and 10 into the corresponding parts of the Initiator and Responder
indicated by i and r respectively. This is done to explicitly compute everything as soon as
possible, which results in a better structure and simpler implementation in EasyCrypt. The
following is a stpe-by-step explanation of IKEv2 as used in IPsec.
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IKE_SA_INIT_initiator_send
1.1 %← Initiator

Set the role % of the protocol instance to Initiator.
1.2 SPIi ∈R {0, 1}64 \ {0}

The security parameter index SPI is a bitstring used in the header to identify the protocol
instance. In the first message the index for the Responder is set to 0.

1.3 a ∈R Zq, with q order of g

Prepare the security association SAi1, which contains four lists of supported crypto-
graphic algorithms. Here the initiator guesses from the list of groups for the Diffie-
Hellman key exchange one and randomly picks an exponent a.

1.4 KEi← ga

Use the secret information a to compute ga, which is used for the Diffie-Hellman key
exchange.

1.5 Ni ∈R {0, 1}λ

Choose a random nonce of length λ, which is part of the security parameters.
1.6 Send m1 ← Hdr, SAi1, KEi, Ni

Send the first message containing the header, security association, part of Diffie Hellman
key exchange and a nonce. Await a response.

IKE_SA_INIT_responder_accept
2.1 parse m1

Read the given message and check for parse errors.
2.2 If no variant is supported, then reject,

notify NO_PROPOSAL_CHOSEN, and abort.
Choose algorithms from SAi1 to use from now on. If the set SAr1 containing four
algorithms cannot be defined, abort. Note that this only happens if both sides support
different algorithms.

2.3 If group in KEi was guessed wrongly then reject,
notify INVALID_KE_PAYLOAD indicating the correct group, and abort.
Check if the group for Diffie-Hellman key exchange was guessed correctly. If not, send a
reject-message indicating the correct group to use.
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IKE_SA_INIT_responder_send
3.1 %← Responder

Set the role % of the protocol instance to Responder.
3.2 SPIr ∈R {0, 1}64 \ {0}

Randomly choose the security parameter index.
3.3 b ∈R Zq, with q order of g

Choose the secret knowledge for Diffie-Hellman key exchange.
3.4 KEr← gb, DH← KEib

Compute KEr and execute the key exchange.
3.5 Nr ∈R {0, 1}λ

Choose a random nonce.
3.6 Send m2 ← Hdr, SAr1, KEr, Nr, CERTREQ

Send the second message containing CERTREQ, which is requesting the other party to
provide a certificate.

IKE_SA_INIT_keyderivation
5r.1 SKEYSEED← prf(Ni|Nr, DH)

Use the shared key DH and both nonces to generate common keyseed.
5r.2 SK← prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)

Use the common keyseed and lengthen this bitstring with prf+ to generate a longer
common key.

5r.3 SKd|SKai|SKar|SKei|SKer|SKpi|SKpr ← SK
Split the key into parts. SKd is used to derive further keys, SKai and SKai are used for
authenticating, SKei and SKer for encrypting messages, and SKpi and SKpr for proving
that both know the shared secret at the end.

IKE_SA_INIT_initiator_accept
4.1 parse m2

Read the given message and check for parse errors.
4.2 If SAr1 was not part of SAi1 or the chosen group does not match the one
used for KEi and KEr then abort.

Check if the sent chosen algorithms are supported. Further, if the group picked for the
Diffie-Hellman key exchange is wrong, abort. Optionally inform the other side.

4.3 DH← KEra

Apply the key exchange.
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IKE_SA_INIT_keyderivation
Same as the key derivation on the side of the Responder.
5i.1 SKEYSEED← prf(Ni|Nr, DH)
5i.2 SK← prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)
5i.3 SKd|SKai|SKar|SKei|SKer|SKpi|SKpr ← SK

IKE_AUTH_initiator_send
6.1 Mi← m1|Nr|prf(SKpi, IDi)

Prepare the identity and certificate of the party that instantiated this protocol instance
on the side Initiator. Note that m1 was provided by this side of the protocol instance,
where Nr is given through the message m2.

6.2 AUTHi← SIG.Sign(skIDi, Mi)
Sign the concatenated information for authentication.

6.3 t3 ← IDi, CERTi, CERTREQ,AUTHi, SAi2, TSi, TSr
Prepare SAi2, TSi and TSr for establishing the full common security association SA.
Here TSi and TSr are called “Traffic Selectors”. They are specifying the traffic handled
by SA. Together with the authentication, certificate, identity and the certificate-request
build the to-be sent message.

6.4 tenc
3 ← AE.Enc(SKei|SKai, Hdr, t3)

Use the authenticated encryption algorithm that was agreed upon earlier to encrypt the
message.

6.5 Send m3 ← Hdr, tenc
3

Send the header with the encrypted message.

IKE_AUTH_responder_accept
7.1 parse m3

Read the given message and check for parse errors.
7.2 t3 ← AE.Dec(SKei|SKai, Hdr, tenc

3 )
Use the agreed upon scheme to decrypt the message.

7.3 If t3 =⊥ then reject, notify AUTHENTICATION_FAILED and abort.
If the authenticated decryption failed, abort.

7.4 parse t3

If decryption worked, check for parse errors.
7.5 parse CERTi for SIG.Vfy, pkIDi

Prepare everything needed to be able to verify the authentication Mi of the message.
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7.6 Mi← m1|Nr|prf(SKpi, IDi)
Compute Mi with own variables. Note that m1 is the received message, Nr was picked,
SKpi was computed with common shared knowledge, and IDi was received just now.

7.7 If not valid(CERTi, IDi, pkIDi) or not SIG.Vfy(pkIDi, Mi, AUTHi), then
reject, notify AUTHENTICATION_FAILED and abort.
Check the validation of the given certificate and the authentication of Mi. If not, abort.

7.8 Λ← accept
Set the state Λ of the protocol instance to accept.

7.9 Π← IDi
Set the partner Π of this protocol instance to the sent identity. Due to the correct
signature this partner fits to the given public key pkIDi.

IKE_AUTH_responder_send
8.1 Mr← m2|Ni|prf(SKpr, IDr)

Analogous to the other side compute everything that is signed later on.
8.2 AUTHr← SIG.Sign(Mr)

Sign to generate authentication for identity.
8.3 t4 ← IDr, CERTr, AUTHr, SAr2, TSi, TSr

Generate the to-be sent message.
8.4 tenc

4 ← AE.Enc(SKer|SKar, Hdr, t4)
Encrypt the message.

8.5 Send m4 ← Hdr, tenc
4

Together with the header send the encrypted message.

IKE_AUTH_keyderivation
10r.1 KEYMAT← prf+(SKd, Ni|Nr)

If negotiation was successful, then prepare the keymaterial KEYMAT. Use this together
with SAr2 to establish common algorithms and keys that will be used for communication
from now on.
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IKE_AUTH_initiator_accept
9.1 parse m4

Read the given message and check for parse errors.
9.2 t4 ← AE.Dec(SKer|SKar, Hdr, tenc

4 )
Decrypt the given message.

9.3 If t4 =⊥ then reject, notify AUTHENTICATION_FAILED and abort.
Check if the authenticated decryption failed.

9.4 parse t4

Check for parse errors.
9.5 parse CERTr for pkIDr, SIG.Vfy

Prepare to verify the authentication.
9.6 Mr← m2|Ni|prf(SKpr, IDr)

Generate what should be signed with previous knowledge of Mr, Ni and SKpr.
9.7 If not valid(CERTr, IDr, pkIDr) or not SIG.Vfy(pkIDr, Mr, AUTHr) then

reject, notify AUTHENTICATION_FAILED and abort.
Check the validation of the given certificate and the authentication of Mr. If not, abort.

9.8 Λ←accept
Set the state Λ of the protocol instance to accept.

9.9 Π← IDr
Set the partner Π of this protocol instance to the sent identity.

IKE_AUTH_keyderivation
10i.1 KEYMAT← prf+(SKd, Ni|Nr)

Analogous to the side of the Responder, compute everything needed for further com-
munication.
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3.1. Short Version
This section contains a shortened version of the protocol IPsec without details.

IKE_SA_INIT_initiator_send
1.1. %← Initiator
1.2. SPIi ∈R {0, 1}64 \ {0}
1.3. a ∈R Zq, with q order of g
1.4. KEi← ga

1.5. Ni ∈R {0, 1}λ
1.6. Send m1 ← Hdr, SAi1, KEi, Ni

IKE_SA_INIT_responder_accept
2.1. parse m1
2.2. If no variant is supported, then

reject, notify NO_PROPOSAL_CHOSEN,
and abort.

2.3. If group in KEi was guessed wrongly
then reject, notify
INVALID_KE_PAYLOAD indicating the
correct group, and abort.

IKE_SA_INIT_responder_send
3.1. %← Responder
3.2. SPIr ∈R {0, 1}64 \ {0}
3.3. b ∈R Zq, with q order of g
3.4. KEr← gb, DH← KEib

3.5. Nr ∈R {0, 1}λ
3.6. Send m2 ← Hdr, SAr1, KEr, Nr, CERTREQ
IKE_SA_INIT_keyderivation
5r.1. SKEYSEED← prf(Ni|Nr, DH)
5r.2. SK← prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)
5r.3. SKd|SKai|SKar|SKei|SKer|SKpi|SKpr ← SK

IKE_SA_INIT_initiator_accept
4.1. parse m2
4.2. If SAr1 was not part of SAi1 or the

chosen group does not match the one
used for KEi and KEr then abort.

4.3. DH← KEra

IKE_SA_INIT_keyderivation
5i.1. SKEYSEED← prf(Ni|Nr, DH)
5i.2. SK← prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)
5i.3. SKd|SKai|SKar|SKei|SKer|SKpi|SKpr ← SK
IKE_AUTH_initiator_send
6.1. Mi← m1|Nr|prf(SKpi, IDi)
6.2. AUTHi← SIG.Sign(skIDi, Mi)
6.3. t3 ← IDi, CERTi, CERTREQ,

AUTHi, SAi2, TSi, TSr
6.4. tenc

3 ← AE.Enc(SKei|SKai, Hdr, t3)
6.5. Send m3 ← Hdr, tenc

3

IKE_AUTH_responder_accept
7.1. parse m3
7.2. t3 ← AE.Dec(SKei|SKai, Hdr, tenc

3 )
7.3. If t3 =⊥ then reject, notify

AUTHENTICATION_FAILED and abort.
7.4. parse t3
7.5. parse CERTi for SIG.Vfy, pkIDi
7.6. Mi← m1|Nr|prf(SKpi, IDi)
7.7. If not valid(CERTi, IDi, pkIDi) or not

SIG.Vfy(pkIDi, Mi, AUTHi) then reject,
notify AUTHENTICATION_FAILED
and abort.

7.8. Λ← accept
7.9. Π← IDi
IKE_AUTH_responder_send
8.1. Mr← m2|Ni|prf(SKpr, IDr)
8.2. AUTHr← SIG.Sign(Mr)
8.3. t4 ← IDr, CERTr, AUTHr, SAr2, TSi, TSr
8.4. tenc

4 ← AE.Enc(SKer|SKar, Hdr, t4)
8.5. Send m4 ← Hdr, tenc

4

IKE_AUTH_keyderivation
10r.1. KEYMAT← prf+(SKd, Ni|Nr)

IKE_AUTH_initiator_accept
9.1. parse m4
9.2. t4 ← AE.Dec(SKer|SKar, Hdr, tenc

4 )
9.3. If t4 =⊥ then reject, notify

AUTHENTICATION_FAILED and abort.
9.4. parse t4
9.5. parse CERTr for pkIDr, SIG.Vfy
9.6. Mr← m2|Ni|prf(SKpr, IDr)
9.7. If not valid(CERTr, IDr, pkIDr) or not

SIG.Vfy(pkIDr, Mr, AUTHr) then reject,
notify AUTHENTICATION_FAILED
and abort.

9.8. Λ← accept
9.9. Π← IDr
IKE_AUTH_keyderivation
10i.1. KEYMAT← prf+(SKd, Ni|Nr)
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4. The Game: AKE

Compared to Heussen et al. (2017) we change the presentation of the game AKE such that it
fits better to the language of EasyCrypt. Those changes are minimal and do not alter the
idea or meaning of the game. We quickly go through this remodeling and then present the
full game AKE with its oracles.

While loop
Instead of using a loop to go through all protocol instances and check for an authentication
break this way, we instead introduce a set. This set contains all candidates for an authentic-
ation break. Every time a protocol instance would be skipped during the loop, it is removed
from this set. This restructure only modifies the view and does not alter the check for an
authentication break at all.

Return statement
In EasyCrypt we are only allowed to use a single return statement. For this reason we move
everything connected to the game’s decision to the end. Note that if an authentication break
was detected, the computations during the check of a real-or-random attack are omitted.
Therefore nothing is changed by replacing the return statements.

4.1. Oracles

The game AKE consists of four oracles. Those are OSend, OReveal, OCorrupt and OTest. We
go through the oracles and their purpose with respect to those defined by Li et al. (2015),
namely “Sendpre”, “RegisterParty”, “RevealKey” and “Corrupt”.

OSend(P, π,m):
This oracle consists of two separate steps. First, if the protocol instance π is not initiated yet,
it is connected to P and starts for the first time with input-message m. Second, it responds
with message m′, which is exactly the one sent according to the protocol specifications and
the internal state of π. This allows the adversary to simulate any communication between
two parties. The same kind of oracle in (Li et al., 2015) is called “Sendpre”.
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Instantiate
Input: party P ∈ P, protocol instance π ∈ Q
Output: nothing

1: Instantiate the protocol instance π according to the protocol. Attach party P
to π. Give π a copy of party P ’s certificate pkCERT, public signature key pkP
and signing oracle SIG.Sign(skP ).

Oracle: OSend

Input: party P ∈ P, protocol instance π ∈ Q, message m
Output: response m′

1: If π is not instantiated then Instantiate(pi)

2: Act according to the protocol. Depending on the internal state of the protocol
instance π and the message m it gets, apply the steps from the protocol.

3: Set m′ to the response that π generates by processing message m. This re-
sponse is empty if π is in the state accept or abort.

4: Return m′

OReveal(π):
Calling this oracle with a protocol instance π will output the session key if one was already
established. This means that we allow the adversary to look at the keys that are exchanged
by the protocol, just as “RevealKey” does.

Oracle: OReveal

Input: protocol instance π ∈ Q
Output: session key KEYMAT or ⊥

1: If π has not accepted then Return ⊥
2: Else Return session key KEYMAT of π
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OCorrupt(P ):
A query on this oracle allows the adversary to gain access to the long-term stored secret of
the party P . This is similar to “RegisterParty” and “Reveal” by (Li et al., 2015), where they
either allow the adversary to fully establish a new party knowing all secrets, or give him
access to some stored secrets. Since IPsec has two completely split phases, before and after
key exchange, we only need to differentiate between keys that are needed for either phase.
This oracle OCorrupt is used to break the first phase before the key exchange is completed.
To correctly formulate the AKE security, we need to be careful and check that this oracle is
only used to gain information after a connection was established between two parties.

Oracle: OCorrupt

Input: a party P ∈ P
Output: secret key skP

1: Return long-term private key skP of the party P .

OTest(π):
This is the only oracle that is not defined by Li et al. (2015). Here we present the challenge
towards the adversary. Considering the hidden bit the oracle either returns the truly gener-
ated key by the protocol instance π, or a randomly picked key. If the adversary guesses the
hidden bit correctly, he wins the game AKE. Of course we do not want to allow the adversary
to just use the oracle OReveal to instantly know if the returned key is random or not. For
this reason we have to check that in the game and forbid the adversary to gain advantage
by doing that.

Oracle: OTest

Input: protocol instance π ∈ Q
Output: potential session key KEY or ⊥

1: If this oracle has already been called then Return ⊥
2: If π has not accepted then Return ⊥
3: Define KEY0 ← π.KEYMAT
4: Define KEY1 ∈R K
5: Return KEYh
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4.2. Game

Considering the AKE model, there exist two major security aspects during the establishment
of the common key. One is called the authentication break (AB). This means that the
adversary is able to establish a connection that was not intended by the party. For example
a man-in-the-middle attack leads to such a break. The second aspect, called real-or-random
attack (RORA), is the indistinguishability between a random and the established key. This is
the highest security aspect that we can show for a key exchange. It means that no adversary
is able to get any information about the exchanged key. We formulate both possible attack
scenarios in the game. The bit 0 and REJECT are equal, as are the bit 1 and ACCEPT.

Game: AKE
Input: Security parameters.
Output: ACCEPT or REJECT

. Prepare the environment.
1: Pick RandomDecision ∈R {0, 1}.
2: Pick π̄′ ∈R Q, π̂′ ∈R Q \ {π̄′}.
3: Generate keypair (pkCERT, skCERT)← SIG.Keygen(1κ) for certification authority and

construct signing oracle OSignCERT that produces signatures using skCERT.
4: For P ∈ P do
5: Equip party P with a keypair (pkP , skP )← SIG.Keygen(1κ) and define

its signing oracle SIG.Sign(skP , ·).
6: Equip party P with CERTP ← OEUF-CMA

SignCERT(pkP , IDP ).

. Next, call the adversary.
7: Pick a hidden bit h ∈R {0, 1}.
8: Construct oracles OSend, OReveal, OCorrupt, and OTest.
9: Call adversary A with the four oracles OSend, OReveal, OCorrupt, and OTest.

Await guess h′ ∈ {0, 1}.

. First, check for authentication break.
10: Define Q′ ← Q. . Reduce this set instead of loop.
11: Reduce: Q′ ← {π′ ∈ Q′ | π′ has accepted}
12: Reduce: Q′ ← Q′ \ {π′ ∈ Q′ | party π′.P was corrupted before π′ was accepted}
13: Reduce: Q′ ← Q′ \ {π′ ∈ Q′ | π′ communicates with one protocol instance}
14: Detect authentication break:
15: If |Q′| > 0 then detect authentication break with π̄ ∈R Q′ and party P̄ ← π̄.P .
16: Else there is no authentication break.
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. Second, check for real-or-random attack.
17: If no authentication break was detected then
18: If OTest was not called then break.
19: Define π̄′ as the tested protocol instance.
20: If OCorrupt was used on π̄′.P before π̄′ accepted then break.
21: Define π̂′ as the one protocol instance that communicates with π̄′. Therefore

they have opposite roles and all messages between π̂′ and π̄′ coincide.
22: If OReveal was used on π̄′ or on π̂′ then break.
23: Detect real-or-random attack.
24: Else No real-or-random attack detected.

. Last, return the game’s decision
25: If authentication break was detected then
26: Return ACCEPT. . AB
27: If real-or-random attack was detected then . RORA
28: If h = h′ then
29: Return ACCEPT.
30: Else
31: Return REJECT.
32: If no authentication break and no real-or-random attack was detected then
33: Return RandomDecision. . NOATTACK

Definition: We define the advantage of the game AKE for adversary A as

advAKE(A) =
∣∣∣∣Pr[A wins game AKE]− 1

2

∣∣∣∣ .
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Considering the three possible disjoint return statements NOATTACK, AB and RORA. We split
the advantage into those three parts. To do that, we first define the games AB and RORA. The
game RORA is the same as the game AKE, where we just replace the return of an authentication
break with a random decision. Vice versa the game AB is defined. This leads to them only
having non-zero advantage if an attack corresponding to their own notation occured. Then
we get:

advRORA(A) =
∣∣∣∣Pr[A wins RORA]− 1

2 Pr[RORA]
∣∣∣∣

=
∣∣∣∣Pr[A wins AKE | RORA]− 1

2

∣∣∣∣ · Pr[RORA],

advAB(A) = |Pr[A wins AB]− 0|

= |Pr[A wins AKE | AB]| · Pr[AB].

Note that Pr[AB] + Pr[RORA] + Pr[NOATTACK] = 1. This leads to the split.

advAKE(A) =
∣∣∣∣Pr[A wins AKE | AB] · Pr[AB]12
+ Pr[A wins AKE | RORA] · Pr[RORA]

+ Pr[A wins AKE | NOATTACK] · Pr[NOATTACK]− 1
2

∣∣∣∣
=
∣∣∣∣(Pr[A wins AKE | AB]− 1

2

)
· Pr[AB]

+
(
Pr[A wins AKE | RORA]− 1

2

)
· Pr[RORA]

+
(
Pr[A wins AKE | NOATTACK]− 1

2

)
· Pr[NOATTACK]

∣∣∣∣
= advRORA(A) + advAB(A)

The authentication break can be split into two parts, one for each role of the broken protocol
instance. Since we focus on the real-or-random attack only, we omit this.

Note that a real-or-random attack only happens if π̄′ and π̂′ communicate.
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5. RORA-security

In this chapter we formulate the security for a real-or-random attack for IPsec. To show
that this property holds, we use a game sequence of 7 games and apply the Game Hopping
Lemma several times.

5.1. Theorem

The following theorem states that under the given security assumptions towards the crypto-
graphic primitives used by IPsec, it is secure against real-or-random attacks.

Theorem 2: Real or random security for IKEv2 in the game AKE, (Heussen et al., 2017).
Assume that

(i) All primitives are as secure as stated in section 2.7.

(ii) Every party uses a certificate for authentication (note: not needed in RORA-scenario).

Then for every probabilistic polynomial time adversary A the advantage advRORA(A) is at
most negligible.

To prove this theorem we define a sequence of game hops and show that every two consecutive
games have negligible difference. All of the upcoming proofs are implemented in EasyCrypt
and implemented. The code needs some further assumptions, which we discuss later on. We
present a game hop with two columns, where the left side is for remembering the original
lines of the game, whereas the right side is the modification done to get to the new game.

5.2. Game hops

To prove theorem 2, we rely on the game sequence presented by Heussen et al. (2017).
We remodel the existing proof such that it suits an implementation in EasyCrypt better.
Building upon this, we introduce two new games A5 and A6. We show that each game hop
has at most negligible difference in the corresponding games. This is done by either applying
the Game Hopping Lemma or showing the equality of both games.

25



5.2.1. Game hop: RORA→ A1

As our first game hop, we introduce two new protocol instances π̄∗ and π̂∗, which have to
be the same as π̄′ and π̂′. Note that the adversary picks π̄′ by calling it to the oracle OTest,
which means that he has to guess the randomly picked π̄∗ correctly. Consequently he is only
able to win the new game A1 in the real-or-random case, if he uses π̄∗ as input for the oracle
OTest and π̄∗ and π̂∗ communicate.

RORA
2: Pick π̄′ ∈R Q, π̂′ ∈R Q \ {π̄′}.

27: If real-or-random attack was detected then

28: If h = h′ then
29: Return ACCEPT.
30: Else
31: Return REJECT.

A1
2: Pick π̄′ ∈R Q, π̂′ ∈R Q \ {π̄′}, and pick
π̄∗ ∈R Q, π̂∗ ∈R Q \ {π̄∗}.

27: If real-or-random attack was detected then
If (π̄∗, π̂∗) 6= (π̄′, π̂′) then

Return RandomDecision
28: If h = h′ then
29: Return ACCEPT.
30: Else
31: Return REJECT.

Lemma 2: Game hop RORA→ A1.
For every probabilistic polynomial time adversary A we have

advRORA(A) = q(q− 1) · advA1(A),

where q is the number of protocol instances, meaning q = |Q|.

Proof. We apply Game Hopping Lemma (ii) with

• G0 = RORA and its success event S0,

• G1 = A1 and its success event S1, and

• the error event E where (π̄∗, π̂∗) 6= (π̄′, π̂′) holds.

For this, we show the following properties:

1. S0 4 S1 ⊆ E.

The two games only differ by a single if-statement. This if-statement leads to a different
outcome if E holds, otherwise the games are the same.

2. S0 and E are independent.

In the game RORA the variables π̄∗ and π̂∗ do not occur. Therefore the probabilities
Pr[S0 | E] and Pr[S0 | ¬E] are equal, hence §0 and E are independent.
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3. Pr[S1 | E] = 1/2.

If the error event E holds, then the resulting return command is a random decision,
hence the probability for winning the game A1 is 1/2.

We know that Pr[¬E] = 1
q∗(q−1) because π̄∗ 6= π̂∗ ∈R Q and |Q| = q. Therefore by the large

error hop of the Game Hopping Lemma we get:∣∣∣∣Pr[S0]− 1
2

∣∣∣∣ = 1
Pr[¬E] ·

∣∣∣∣Pr[S1]− 1
2

∣∣∣∣
⇒

∣∣∣∣Pr[G0 is won]− 1
2

∣∣∣∣ = q ∗ (q− 1) ·
∣∣∣∣Pr[G1 is won]− 1

2

∣∣∣∣
Applying the definition of advantage proves the lemma.

5.2.2. Game hop: A1→ A2

As our next step we want to replace the Diffie-Hellman key exchange with something
truly random. For this reason we construct distinguisher DMP-PRF*-OODH

A1→A2 playing the game
MP-PRF*-OODH. We use him to swap the pseudorandom function that is applied to the in-
formation of the Diffie-Hellman key exchange with a truly random function. This leads to
the game A2, which is exactly the game resulting by this swap. We then apply the Game
Hopping Lemma to show that the difference between A1 and A2 is bounded by the game
MP-PRF*-OODH. First, we define the distinguisher.

Distinguisher: DMP-PRF*-OODH
A1→A2

Input: (AΓ)Γ∈G , (BΓ)Γ∈G ,OMP-PRF*-OODH
PRF ,OMP-PRF*-OODH

LODH ,OMP-PRF*-OODH
RODH

Start with SKEYSEEDmod ← false. Embed the oracles in the protocols π̄∗ and π̂∗ in the
following lines of game A1:
1.4. If either π̄∗ or π̂∗ has role Initiator then

KEi← AΓ

a← empty
Else KEi← ga.

3.4. If either π̄∗ or π̂∗ has role Responder then
KEr← BΓ

b← empty
Else KEi← gb, DH← KEib

5r.1. If b = empty then
If KEi = AΓ then
OMP-PRF*-OODH

PRF (prf, SAr1.Γ, Ni|Nr)
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Else SKEYSEED← OMP-PRF*-OODH
RODH (prf, KEi, Ni|Nr)

Else SKEYSEED← prf(Ni|Nr, DH)
4.3. If a 6= empty then DH← KEra

5i.1. If a = empty then
If KEr = BΓ then
OMP-PRF*-OODH

PRF (prf, SAr1.Γ, Ni|Nr)
Else SKEYSEED← OMP-PRF*-OODH

LODH (prf, KEr, Ni|Nr)
Else SKEYSEED← prf(Ni|Nr, DH)

Call the adversary with the changed protocol to get its guess. If he wins, then return
h′ ← 0, else return h′ ← 1 for game MP-PRF*-OODH.

Note that we differentiate between the roles Initiator and Responder. Due to our split
between Initiator and Responder, we do not need to check for information of π̄∗ and
π̂∗ at the same time as presented by Heussen et al. (2017). This allows us to focus on one
protocol instance at a time, which simplifies the implementation.

A1

1.4. KEi← ga.

3.4. KEi← gb, DH← KEib

5r.1. SKEYSEED← prf(Ni|Nr, DH)

4.3. DH← KEra

5i.1. SKEYSEED← prf(Ni|Nr, DH)

A2
Initialize values only used for π̄∗ and π̂∗:
For each allowed group Γ pick aΓ, bΓ ∈R ZqΓ , set
AΓ ← gaΓ

Γ , BΓ ← gbΓ
Γ , SKEYSEEDmod ← false.

For each function prf pick trf∗prf ∈R F .
1.4. If either π̄∗ or π̂∗ has role Initiator

then
KEi← AΓ
a← empty

Else KEi← ga.
3.4. If either π̄∗ or π̂∗ has role Responder

then
KEr← BΓ
b← empty

Else KEr← gb, DH← KEib

5r.1. If b = empty then
If KEi = AΓ then

SKEYSEED← trf∗prf(Ni, Nr)
SKEYSEEDmod ← true

Else SKEYSEED← prf(Ni|Nr, KEibΓ)
Else SKEYSEED← prf(Ni|Nr, DH)

4.3. If a 6= empty then DH← KEra

5i.1. If a = empty then
If KEr = BΓ then

SKEYSEED← trf∗prf(Ni, Nr)
SKEYSEEDmod ← true

Else SKEYSEED← prf(Ni|Nr, KEraΓ)
Else SKEYSEED← prf(Ni|Nr, DH)
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Lemma 3: Game hop A1→ A2.
For every probabilistic polynomial time adversary A we have

advA1(A) ≤ advA2(A) + 2 · advMP-PRF*-OODH.

Proof. It is really important to check the substitution of a function thoroughly. The function
has to be replaced if and only if the same key is used. If this does not hold, the adversary
could be able to read differences between the left and right game, which is not covered by
the game hop. Therefore we have to check the correctness of the key ourselves. Note that
we only change the protocol for π̄∗ and π̂∗. Assume that π̄∗ has the role Initiator. We
only look at this protocol instance since π̂∗ behaves in the same way and the case for the
other role is analogous.
To prove this lemma we apply Game Hopping Lemma (i). We use G0 = A1, G1 = A2,
G = MP-PRF*-OODH, and distinguisher D = DMP-PRF*-OODH

A1→A2 . Note that the adversary cannot
see the variable SKEYSEEDmod. To be able to apply the Game Hopping Lemma, we show that
the properties of Lemma 1 hold.

1. The view of the adversary is identical, whether interacting with Gh∗ or D.
If KEr 6= BΓ, then the oracle OMP-PRF*-OODH

LODH is called with KEr. This results in a normal
Diffie-Hellman key exchange where we swapped KEi with AΓ = gaΓ and a with aΓ. This
leads to no difference and is independent of the hidden bit. Now consider the case where
KEr = BΓ holds. Then we apply OMP-PRF*-OODH

PRF , which depends on the hidden bit. Separate
this in the two following two cases.

• left side, hMP-PRF*-OODH
Γ,prf = 0

In this case both, a and b, are swapped with aΓ and bΓ at every possible place.
This is the same as the Diffie-Hellman key exchange, where the secret knowledge is
just predefined by the game MP-PRF*-OODH. The adversary has the same knowledge
about the game A1, therefore the view is identical.

• right side, hMP-PRF*-OODH
Γ,prf = 1

Here, the oracle OMP-PRF*-OODH
PRF applies a truly random function instead of the pseu-

dorandom function prf with key DHΓ. We have to check that every time prf with DH
as secondary input is called, the whole function is replaced and only then. The same
key is DHΓ = AbΓΓ = BaΓ

Γ by the distinguisher. The oracle OMP-PRF*-OODH
PRF is only called

if a = empty, which means KEi = AΓ, and KEr = BΓ. Therefore the Diffie-Hellman
key is DHΓ. Vice versa this holds for π̂∗, where b = empty and KEi = AΓ. This means
that we really swap to the truly random function only if the key is DHΓ. Therefore
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if the same pseudorandom function is used, we swap it with the same truly random
function. This is exactly what we need to show, thus the adversary does not see any
difference between the right side game of the distinguisher and the game A2.

2. G accepts if and only if its hidden bit is guessed correctly.
This is true by definition of the game MP-PRF*-OODH.

3. The answer of the distinguisher D is 0 if and only if A wins Gh∗, otherwise D returns 1.
This is true by definition of the returned guess of DMP-PRF*-OODH

A1→A2 .

Now by applying Lemma 1, we know that the assumptions for the Game Hopping Lemma
hold. This proves the lemma.

5.2.3. Game hop: A2→ A3

Now we use the randomly assigned Diffie-Hellman key to further randomize the value of
SKEYSEED. The game hop is defined through the following distinguisher playing the game
MP-PRF.

Distinguisher: DMP-PRF
A2→A3

Input: OMP-PRF

Start with SKmod ← false. Initialize Ni◦ = Ni, Nr◦ = Nr, and prf◦ = prf, where
Ni and Nr are the nonces of the π̄∗ or π̂∗ and prf is the used pseudorandom function
specified in the security association, depending on who gets the role Responder first.
Embed the oracles in the following line of game A2 for Initiator and Responder
respectively:
5.2. If SKEYSEEDmod = true,

Ni = Ni◦,
Nr = Nr◦, and
prf = prf◦ then

SK← (OMP-PRF)+(prf, Ni|Nr|SPIi|SPIr)
Else SK← prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)

Call the adversary with the changed protocol to get its guess. If he wins, then return
h′ ← 0, else return h′ ← 1 for game MP-PRF*-OODH.

Note that (OMP-PRF)+ means that the oracle is used in the same way as the pseudorandom
function prf to produce prf+.
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A2

5.2. SK← prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)

A3
Initialize SKmod ← false.
Let Ni×, Nr× and prf× be defined through first
appearance of π̄∗ or π̂∗ with role Responder, set
Ni◦ ← Ni×, Nr◦ ← Nr×, and prf◦ ← prf×.
5.2. If SKEYSEEDmod = true,

Ni = Ni◦,
Nr = Nr◦, and
prf = prf◦ then

SK← trfprf+(Ni|Nr|SPIi|SPIr)
SKmod ← true

Else SK←
prf+(SKEYSEED, Ni|Nr|SPIi|SPIr)

Lemma 4: Game hop A2→ A3.
For every probabilistic polynomial time adversary A we have

advA2(A) ≤ advA3(A) + 2 · advMP-PRF.

Proof. This proof is similar to the last one. The oracle OMP-PRF exactly either uses
prf(SKEYSEED, Ni|Nr|SPIi|SPIr) or trfprf+(Ni|Nr|SPIi|SPIr) for hidden bit 0 and 1 re-
spectively. We need to check, that every time prf and SKEYSEED are the same for π̄∗ and π̂∗,
they also get the same truly random function in game A3. Since the oracle OMP-PRF is only
called if the value SKEYSEEDmod is set to true and the nonces are the same, then we know that
SKEYSEED = trf∗prf(Ni|Nr) holds. Therefore as long as the nonces and the pseudorandom
function are the same, which we define through the if-statement, the oracle is only called for
a fixed and specific key SKEYSEED.

5.2.4. Game hop: A3→ A4

As our third game hop, we apply a distinguisher playing MP-PRF to randomize the key
material KEYMAT. If SKmod is set to true, we know by game A3 that the nonces and security
association have to be equal. Therefore we only need to check if SKmod is set to true and the
equality of the security parameter indices SPIi and SPIr to ensure that the same variable
SKd is used.
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Distinguisher: DMP-PRF
A3→A4

Input: OMP-PRF

Initialize SPIi◦ = SPIi and SPIr◦ = SPIr, where SPIi and SPIr are the security
parameter indices of π̄∗ or π̂∗, depending on who gets the role Responder first. Embed
the oracles in the following line of game A3 for Initiator and Responder respectively:
10.1. If SKmod = true and SPIi|SPIr = SPIi◦ |SPIr◦ then

KEYMAT← (OMP-PRF)+(prf, Ni|Nr)
Else KEYMAT← prf+(SKd, Ni|Nr)

Call the adversary with the changed protocol to get its guess. If he wins, then return
h′ ← 0, else return h′ ← 1 for game MP-PRF*-OODH.

A3

10.1. KEYMAT← prf+(SKd, Ni|Nr)

A4
Initialize KEYMATmod ← false.
Let SPIi× and SPIr× be defined through first
apperance of π̄∗ or π̂∗ with role Responder, set
SPIi◦ ← SPIi× and SPIr◦ ← SPIr×.
10.1. If SKmod = true and

SPIi|SPIr = SPIi◦ |SPIr◦ then
KEYMAT← trfprf+(Ni|Nr)
KEYMATmod ← true

Else KEYMAT← prf+(SKd, Ni|Nr)

Lemma 5: Game hop A3→ A4.
For every probabilistic polynomial time adversary A we have

advA3(A) ≤ advA4(A) + 2 · advMP-PRF.

Proof. This proof is analogous to the one before. Note that by the if-statement we check
that SKd and prf are the same function every time the oracle is called.
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5.2.5. Game hop: A4→ A5

Up to this point the proof is similar to the one presented by Heussen et al. (2017). We use
two additional games, which are equal to the game A4. This simplifies the last step, where
we have to show that the last game of the sequence is a null-game.
This game hop changes the oracle OTest in such a way that the hidden bit is not used in
any of the relevant cases anymore. This leads to the adversary having no access to anything
related with the hidden bit, which we show later on.

A4
Oracle OTest:
1: If this oracle as already been called then

Return ⊥
2: If π has not accepted then Return ⊥
3: Define KEY0 ← π.KEYMAT
4: Define KEY1 ∈R K

5: Return KEYh

A5
Redefine the oracle OTest:
1: If this oracle as already been called then

Return ⊥
2: If π has not accepted then Return ⊥
3: Define KEY0 ← π.KEYMAT
4: Define KEY1 ∈R K
5: If π has KEYMATmod set to true then

Return KEY1
6: Else Return KEYh

Lemma 6: Game hop A4→ A5.
For every probabilistic polynomial time adversary A we have

advA4(A) = advA5(A).

Proof. First, note that the adversary only gets information about the hidden bit from the
oracle OTest. Let π be the protocol instance that is called to OTest. During the check for
a real-or-random attack, π̄′ is set to π. Consider its value KEYMATmod. If this is false, then
nothing changes and the games are equal. Look at the other case where KEYMATmod = true
holds. We split this into three cases.

π̄′ 6= π̄∗

By game A1 the adversary has to guess (π̄∗, π̂∗) = (π̄′, π̂′) in order to have an impact
on the outcome of the game. Since this is not true, both games return the same, a
random decision.

π̄′ = π̄∗ with π̄∗ and π̂∗ do not communicate

The definition of a real-or-random attack defined through game RORA states that π̂′ is
defined as the only communication partner for π̄′. If π̄∗ and π̂∗ do not communicate,
that means that π̂∗ 6= π̂′ holds. Analogous to before, in this case the games are equal,
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since the adversary has no impact on the decision anymore. Even if he could detect
the change from game A4 to A5, at this point where he is able to detect it, he already
called OTest. This means that he cannot change the outcome of the game anymore.

π̄′ = π̄∗ with π̄∗ and π̂∗ communicate

This case means that π̄∗ and π̂∗ have KEYMATmod set to true, since every variable they use
are the same. Consequently by game A4, both protocol instances have trfprf+(Ni|Nr)
as the key material. Because this value is assigned through a truly random function,
it is the same as a random assignment. Thus we know that in this case KEY0 and KEY1

are both randomly picked. This is the same as always returning KEY1. Therefore the
adversary does not detect any difference at all, which means that in both games he has
the same probability to win.

We know that in each possible case the adversary has the same winning chance in game A4
and game A5. Since the advantage is defined through the probability to win, the equality of
winning chance already implies the equality of the advantages. This proves the lemma.

5.2.6. Game hop: A5→ A6

This is the last game hop. It changes the oracle OTest such that the hidden bit is not used
anymore. We always return the random key KEY1 to the adversary. This way he has no
information anymore, therefore he is only able to guess.

A5
Oracle OTest:
1: If this oracle as already been called then

Return ⊥
2: If π has not accepted then Return ⊥
3: Define KEY0 ← π.KEYMAT
4: Define KEY1 ∈R K
5: If π has KEYMATmod set to true then

Return KEY1
6: Else Return KEYh

A6
Redefine the oracle OTest:
1: If this oracle as already been called then

Return ⊥
2: If π has not accepted then Return ⊥
3: Define KEY0 ← π.KEYMAT
4: Define KEY1 ∈R K

5: Return KEY1

Lemma 7: Game hop A5→ A6.
For every probabilistic polynomial time adversary A we have

advA5(A) = advA6(A).
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Proof. Let π = π̄′ be the protocol instance called to OTest. In game A5 the returned value
of OTest is already random if KEYMATmod = true holds. Therefore we only need to consider
the case where KEYMATmod is set to false. By games A2 and A3 we see that KEYMATmod is only
possibly be set to true, if the corresponding protocol instance is either π̄∗ or π̂∗. Thus we
split into the following cases.

π̄′ 6= π̄∗

Analogous to before, this means that during the call to OTest the adversary lost his
impact to the game’s decision. The output is random in both games, meaning that the
games are equal in this case.

π̄′ = π̄∗

In this case π̄∗ and π̂∗ do not communicate. Otherwise KEYMATmod would have been
set to true. This means that no real-or-random attack is detected, resulting in same
winning chance in both games.

Since all winning probabilities are the same, this proves the lemma.

5.2.7. Null-game: A6

We now have a game sequence, where we have an explicit bound for each two consecutive
games. As the next step we have to show that the last game of the sequence has no advantage
over randomly guessing. We formulate this as the following lemma.

Lemma 8: Null-game A6.
For every probabilistic polynomial time adversary A we have

advA6(A) = 0

Proof. The hidden bit was only used in the oracle OTest in game RORA. Since this is not the
case in game A6 anymore, the adversary has no access to any information connected to the
hidden bit. For this reason guessing is his only choice, therefore the advantage is 0.
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5.3. Proof of Theorem

We apply the sequence of game hops to prove the main theorem, Real or random security
for IKEv2 in the game AKE, (Heussen et al., 2017).

Proof. Consider the game sequence [RORA, A1, A2, A3, A4, A5, A6]. This gives us the
following bound for the advantage of the game RORA.

advRORA(A) Lemma 2= q · (q− 1) · advA1

≤ q2 · advA1

Lemma 3
≤ q2 ·

(
2 · advMP-PRF*-OODH + advA2

)
Lemma 4
≤ q2 ·

(
2 · advMP-PRF*-OODH + 2 · advMP-PRF + advA3

)
Lemma 5
≤ q2 ·

(
2 · advMP-PRF*-OODH + 4 · advMP-PRF + advA4

)
Lemma 6= q2 ·

(
2 · advMP-PRF*-OODH + 4 · advMP-PRF + advA5

)
Lemma 7= q2 ·

(
2 · advMP-PRF*-OODH + 4 · advMP-PRF + advA6

)
Lemma 8= q2 ·

(
2 · advMP-PRF*-OODH + 4 · advMP-PRF

)

Consider the assumptions of the security of the used primitives. Then the games MP-PRF*-OODH
and MP-PRF have negligible advantage, therefore we know that the game RORA has negligible
advantage too.
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6. Implementation

This chapter focuses towards everything associated with the implementation of the proof.
First we go through the language of EasyCrypt and its capabilities. Afterwards we present
the code and its structure. The subsequent section consists of all hard limitations due to
EasyCrypt’s engine. This is followed by the difficulties during implementation and its implied
restrictions that were necessary.

6.1. EasyCrypt

EasyCrypt is a computer-aided toolset for cryptographic proofs. To get in-depth details,
see Institute, Inria, and École Polytechnique (2014). Its engine is based on the program-
ming language OCaml. EasyCrypt itself is used for interactively finding, constructing and
machine-checking security proofs. It suits the language of games, therefore is close to the
proof in the previous chapter. By itself it does not provide any automatic proof generation.
It supports the automatic provers Alt-Ergo and Z3, which can be used for logical statements.
EasyCrypt can be run in two different setups. One, through the command line, where it
always checks the whole code at once. The other setup needs to use emacs and ProofGeneral,
which allows to run EasyCrypt in an interactive mode. In the following we recall important
terminologies of EasyCrypt and present an example for this used in the implementation.

Types
A type is a mathematical set with some restrictions, mostly due to first order logic. Just
by declaring a type, it only exists and has an arbitrary number of elements. It does not hold
any other property at the point of declaration. Building upon that, we give it a structure
and can define mathematical constructs through this. For example, if we want to construct
a group, we define the corresponding group operation to get this result. Even though it is
a powerful tool, it has some limitations. One example is that we cannot generate a set of
functions, a powerset, or, to be more precise, a set which contains sets.
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Modules and procedures
To model games and oracles we use EasyCrypt’s predefined object called module . It consists
of global variables and procedures. A procedure has at least one type as input, which
it uses to operate on to generate some output. We can grant the adversary access to a
procedure, which we need to allow him to call the oracles. We use two modules per game in
the implementation. One for all the oracles, where each oracle is implemented as a procedure.
The other module consists of one procedure, which is the game the adversary plays itself.
For simplicity we split some larger operations, like the game AKE, into several smaller parts
and call those in the main procedure.

Axioms, lemmas and proofs
An axiom is a logic statement that EasyCrypt always assumes to be correct. It is not
automatically used, we have to explicitly state its usage during a proof. Note that it is
possible to define axioms that are contradicting each other. Therefore they should only
be used with care. We use axioms to define uniform distributions, a truly random func-
tion, and term equalities. For example define two sets type X. and type Y. , and two
different functions f : X -> Y and g : Y -> X . We then define the following axiom
axiom equality_f_g : forall(x), g(f(x))= x. to state that g is the left-inverse of

f. This is especially useful to specify the correctness of the signature scheme and authentic-
ated encryption scheme without specifying it. Similar to the example given before, we define
the correctness of the schemes directly as an axiom without further implementation.
Contrary to an axiom, a lemma is a logical statement in EasyCrypt, which is not assumed
to be true. We first have to prove that a lemma is correct. Afterwards we can use it the
same way as an axiom. Every game hop consists of assumptions that need to be shown.
This results in a different lemma for each assumption.
Note that procedures of modules can be used as variables in a logical statement. This way
we define the probability that a procedure, for example the game, returns a specific value.
This feature is the reason why EasyCrypt is suited for cryptographic proofs, especially in
the game language. We formulate the chance an adversary has at winning a game in the
following way. Let Game be a module containing the procedure main, which uses no input
and returns either ACCEPT or REJECT. Then we define that this procedure has a fifty percent
chance to return ACCEPT in the following way:
lemma null-game &m : Pr[Game.main()@ &m : res = ACCEPT] = 1%r/2%r.
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The variable &m is a memory-variable, which is used to call res, the returned value of the
procedure Game.main(). The term 1%r/2%r represents the rational number 1/2. Instead
of showing the equality of probabilities, we can also show the equalities of the probabilities
of procedures. For this we have to replace the probability-expression 1%r/2%r with the
probability-notion of the procedure as shown on the left hand side. We use this concept
to check the assumptions needed to apply the Game Hopping Lemma. This is done by
formulating the equality for both games, appearing at the (left side) and (right side) of the
Game Hopping Lemma respectively. In EasyCrypt a proof for a lemma is interactively
constructed in its language. The statement of the lemma is transformed into a goal. Every
command modifies this goal and can even divide it into several smaller goals. Only after each
single goal has shown to be true, then the whole lemma is accepted and holds. If the lemma
itself is false, then at least one of the goals will lead to a dead end with a false statement.
The reverse conclusion is not true, meaning that not finding a proof in EasyCrypt does not
mean that the lemma itself has to be false.

Abstract adversary
To formulate a full game, we need to call the adversary at some point. For this, we define
him as an abstract module. It is a module for which the method of operation is not defined.
EasyCrypt quantifies over the power of the abstract adversary, meaning that it only considers
the view of the adversary to check similarities in different scenarios. The idea behind that
is that we use the same adversary in two different games. If everything he gets from both
sides is equally structured, then both games are played the same way and therefore equal
from his point of view. This is the general idea behind EasyCrypt’s modus operandi. We
have to grant the adversary access to certain modules and restrict him, such that he is
not able to call global variables from the modules. Further on, we need to specify which
adversary is used in which game. This means that above the procedure has to be called with
Game(Adversary).main(), where Adversary is the module of the adversary.

6.2. The Code

In the following we present the structure and important details of the implementation. The
written code consists of about 9500 lines. Out of those 2500 lines are for formulating and
defining the games, oracles and the protocol. This starts with several different types for the
definition of a protocol instance and a party. Building upon that we define several functions
to simplify the handling of the protocol list. After that the code consists of the oracles for the
three games MP-PRF*-OODH, MP-PRF and AKE. In the game hops A2→ A3 and A3→ A4 the
oracle MP-PRF is used to replace a pseudorandom function. These two instances of the usage
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of the oracle OMP-PRF differentiate in the type of the input of the pseudorandom function. In
the first of these two game hops the input consists of the concatenation of two nonces and
two security parameter indices. The second hops uses only the nonces for the pseudorandom
function. Since EasyCrypt focuses on the equality of terms and types, this means that the
oracle OMP-PRF needs to be implemented twice. Once for each different input. The oracle
OSend is the one with the most changes through the game sequence. To overcome the issue
of duplicating errors, instead of rewriting this oracle every time, one variable for every game
hop is used. This variable is a boolean and combined with an if-statement directs to the
changes. Those variables have the prefix gs_. As an example consider game hop A2 → A3.
This hop changes the step 5.2. of the protocol. If the variable gs_3 is set to false, then
the protocol is run at this step as normal. Otherwise the modification as described in game
A3 is used. The same is done for the combination of the distinguisher and the adversary.
Variables for these combinations have the prefix gs_oracle_. To be precise, this example
is implemented in the following way.

1 (* Step 5.2 *)
2 sSK <- prfplus(sSKEYSEED,(nNi,nNr,sSPIi,sSPIr)) (* else case *);
3 if(protocol_get_keyseed_mod(pi) = true /\
4 nNi = star_Ni /\
5 nNr = star_Nr)
6 (* equal nonces => equal sSKEYSEED *)
7 {
8 if(gs_a3 = true) {
9 sSK <- trf_prfplus(nNi,nNr,sSPIi,sSPIr);

10 pi <- protocol_set_sk_mod(pi)(true);
11 }
12 if(gs_a3_oracle = true) {
13 sSK <- Oracle_A2_A3.prf(pick_prf,(nNi,nNr,sSPIi,sSPIr));
14 if(Oracle_A2_A3.h = true) pi <- protocol_set_sk_mod(pi)(true);
15 }
16 }

A short explanation considering the naming convention: EasyCrypt only allows variables
to start with a lowercase letter. Therefore every variable starting with an uppercase letter
defined in the protocol IPsec (see section 3.1) has the same letter in lowercase appended in
front. The variables star_Ni and star_Nr are the presentations of Ni◦ and Nr◦. The oracle
Oracle_A2_A3 is one of the implementations of the oracle OMP-PRF as stated before, where
pick_prf is as formalization to pick the pseudorandom function.
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The games themselves are defined subsequently to to the oracles. This contains the games
AKE, MP-PRF*-OODH, and MP-PRF, completing the first part. The second part, which is 7000
lines long, consists of the proofs. This includes every assumption needed to apply the Game
Hopping Lemma used in chapter 5. The application itself is omitted. Out of all the game
hops, only the last one, namely A5→ A6 is missing. Reason for this is stated below in section
6.4. The code of the complete state-machine of the protocol as presented in chapter 3 can
be seen in appendix A.

Technical Aspects
On a virtual machine with one 3.5GHz kernel and roughly 10GB RAM the code needs about
30 minutes to run without interactive mode. This time increases rapidly for every time the
run is stopped. Trying to run the code on a laptop with 4GB RAM in interactive-mode
lead to a deadlock. It was not possible to process some steps in the proof section with
this hardware. This is most likely due to the fact that EasyCrypt’s complexity scales badly
with increased number of used variables. Typically automatic provers have more than an
exponential complexity of the amount of variables. No information about runtime or memory
storage complexity is given by the developers of EasyCrypt yet.

6.3. Limitations

EasyCrypt has a lot of restriction due to its engine’s logic and specific usage of variables.
We take a look at the most important constraints and limitations for the implementation
and discuss the resulting changes.

Set of sets
EasyCrypt has the option to use unknown types or type parameters indicated by ‘ in front
of the type. This means that a function op prf : k * x -> z. can be declared as
op prf : ‘k * ‘x -> ‘z. to have something similar to a template of a function. The
variables k, x, and z all need to be defined, which means the function prf is fixed towards
those variables. On the other hand ‘k, ‘x, and ‘z are unknown type variables. In the
second version of the function prf is defined for every arbitrary set combination. Unknown
types can only be used in type declarations, not in procedures. This leads to a problem in
using the games MP-PRF and MP-PRF*-OODH. There we have a set of keyed functions F ,
which EasyCrypt is not able to define through a set of sets. Each game and oracle has to be
implemented as a module with procedures, which is not able to use unknown types. For that
reason we can only implement a function for specific sets. Consequently we restrict every
pseudorandom function to the same domain and codomain. The same problematic aspects
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can be found in the security association, the set of possible algorithms and groups to choose
from for the protocol. Every algorithm and group has to be defined and controlled. Due to
this high complexity, we restrict the security association to a single element. Consequently
we omit the implementation of the security association altogether. EasyCrypt still proves
the same with or without it, since it only checks for equalities of terms. If the protocol
allows to use different algorithms, we only have to check that the same ones are used. Even
if we have a restriction on a larger scale, it has no impact on the implemented proof or its
verification.

Layers of operation
Consider the module representing a game. It first initializes the oracles, then it invokes
the adversary, who is able to call the oracles himself. This leads to a specific structure
during a proof in EasyCrypt. In the first layer, denote it as the game layer, we have access
to everything the game is able to view, define and operate on. At some point we have to
call the adversary and check everything he is able to compute. This leads to a new layer,
denote it as the oracle layer. During this step, we only have the view and knowledge of the
adversary, meaning that we cannot access any variables of the game directly anymore. In
contrast to the theoretical view, where the game controls the protocol, in EasyCrypt the
protocol is called through an oracle by the adversary. This results in the protocol begin in
the oracle layer instead of the game layer. It is possible to transfer information in the format
of logical statements from the game layer to the oracle layer. Even then, this still leads to a
high loss in information. Due to this we need to change several steps in the games and the
protocol.
First, consider the variables a and b for the Diffie Hellman key exchange. During game A2
those variables are swapped with aΓ and bΓ in the oracle layer. EasyCrypt considers a and
aΓ as equal if they are picked from the same distribution by the same command. Since a
is defined in the oracle layer and aΓ in the game layer, we do not see the command which
was used to define aΓ the moment a is picked. To formulate this as a logical statement and
transfer it all the way through both layers is highly complex and may even be impossible.
Therefore we use another option, which is to predefine the variables a and b in the game
layer for π̄∗ and π̂∗. This implementation does not change the way the protocol operates, it
only gives us a new perspective.
Second, consider the oracle OTest, which is changed in the game hop from game A4 to A5.
We split the proof for this game hop into the cases depending on if π̄∗ and π̂∗ communicate
or not. This is something only the game is able to tell, since the adversary has no access to
the protocols themselves. Consequently for the sake of the proof, we need OTest to be in the
game layer, while it is called by the adversary, meaning it is in the oracle layer. Therefore we
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work around this by splitting the adversary into two phases. In the following we check that
this modification is applicable and no information is lost this way. It is not possible to prove
such a statement in EasyCrypt, since this toolset only allows us to formulate properties of one
adversary used several times. We are not able to state the equality of different adversaries.
Note that OTest is a one-time oracle and if the adversary does not call it, no real-or-random
attack is detected by default. Thus this case is not interesting for us, since the advantage
here is always 0. Consider the case where the adversary calls the oracle OTest. Then we
exchange this adversary A with two adversaries A1 and A2. We define A1 as the same as
A up to the point where OTest would be called. The game gets from A1 the information
which protocol instance he wants to call the oracle with. Then the game does this call and
forwards its output to A2, who does the same as A after OTest was called. As long as A1 and
A2 have access to the same oracles as A, besides the test oracle, this transformation leads
to the equality of the games and corresponding adversaries. This split allows to implement
the oracle OTest at the game layer instead of the oracle layer.

Return old values
Consider the oracle OMP-PRF, which wants to return the old answer if it was seen before. To
achieve that we would have to implement a list and counter to save every call that was done
to this oracle. That leads to a structure which is complex to handle. Instead we use a truly
random function for hidden bit 1 instead of a random pick from the codomain. This way
we ignore the step “return old answer” and only need to call the same function as before to
return the same output. The only reason other literature does not define it this way lies in
the impossibility to define a truly random function in polynomial time.

6.4. Difficulties and Restrictions

In this section we take a look at some of the problems that occurred while implementing the
proofs in EasyCrypt. Their main difference to the limitations above lies in the fact that it
is possible to implement them, though either with high complexity or time consuming work.
We work around some of the problems using theoretical arguments, which are not proven in
EasyCrypt. The problems that are not fixed yet yield restrictions towards the verification of
the proof, which we also discuss. These restrictions are not severe, such that the code is still
usable to attest the security of IPsec. Note that the implementation itself does not show the
security of the RORA-scenario of IPsec. It assists the verification of the proof in chapter 5.
This means that the upcoming arguments and discussion need to validate this verification
and not the proof by itself.
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Last game hop A5→ A6
The general idea of EasyCrypt being able to show that a game is a null-game, is by removing
the hidden bit completely. This removal is problematic in the last game hop, which also
defines the null-game A6.
Consider the case where π, called to OTest, has SKmod set to false. Then we need to argue
that whatever the adversary is doing after that point has no influence towards the game’s
decision anymore. This is not possible to state in the current implementation in EasyCrypt.
Remember that the adversary is split into two phases such that OTest is in the game layer.
In the second phase of the adversary, he is still able to manipulate the list of protocols
Q, since he can call OSend. On the other hand, we need that he can only change protocol
instances that are not important anymore. In theory the game does not even need to call the
adversary a second time. This is something too complex to implement as logical statements
in EasyCrypt. Therefore this game hop is not proven and verified in EasyCrypt. One possible
solution towards this problem would be to restructure the protocols π̄∗ and π̂∗, such that
they are separated entities and not considered as elements of the list of all protocols Q. Then
we only need to check that π̄∗ and π̂∗ are not changed, which is definitely possible.

Oracles OMP-PRF*-OODH
LODH and OMP-PRF*-OODH

RODH

The left and right oracles of the game MP-PRF*-OODH are one-time oracles. Trying to imple-
ment that fact during game hop A1→ A2 resulted in the problem that it was impossible to
check at which point they are called. At the same time the proof for this game hop needs
this information. It should be possible to specify the one-time call with enough properties
inserting into the step from game layer to oracle layer, though this would arise much more
work than benefit. Instead we allow the oracles to be called several times. From theory we
know that they only appear at most once during the game. Therefore the version for the
code is not different to the theoretical view. Note that the one-time fact is also used in the
proof, since we did not define what the protocol is going to do if the oracle is called another
time.

Hidden bits of MP-PRF*-OODH
Considering the hidden bits of the game MP-PRF*-OODH, one is used for every pseudorandom
function. In the game hops where we use this game, we only need to consider one single
hidden bit. This means that instead of implementing a list of hidden bits, we can just use
one single hidden bit and simplify the implementation this way. Note that this change is
only applicable since we use the game MP-PRF*-OODH for a game hop and never consider
it by itself. Otherwise we would need more than just one predefined hidden bit, since the
oracle OMP-PRF*-OODH

PRF can be called several times.
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Truly random function
EasyCrypt by itself sets one variable in two different games to be equal if they are generated
by the same assignment call. It is further possible to define a bijective map between two
assignment calls to show their equality. If one variable is generated through an assignment
call and another is the output of a function, we are not able to show their equality directly.
This problem arises in the game hops A2→ A3 and A3→ A4. There in the games themselves
the pseudorandom function uses a key that is the output of a truly random function. On the
other side, the distinguisher uses a randomly picked key. Those two different constructions
of the key behave in the same way, therefore they are equal from the view of the adversary.
In EasyCrypt we are not able to explain this besides axioms, which we have to use in this
instance.

Pseudorandom function plus
Consider the definition of prf+. It is a method to obtain up to 255 times more output from
the pseudorandom function prf. Currently we restrict that to prf+ being a pseudorandom
function by itself, severing its connections to prf. Computation and memory rises, probably
at an exponential rate, with every variable. Since prf+ would be presented as the combina-
tion of 255 times prf applied every time it is called, this would result in a complexity higher
than possible practical purpose. The property that prf+ is a pseudorandom function on its
own is also used in the theoretical proof. Therefore this does not decrease the relevance of
the proof verification.

Bitstrings
In practice, the information sent during IPsec is in the format of bitstrings. The type of a
bitstring is already defined through EasyCrypt’s library, though impractical in the usage of
a large protocol due to its complicated definition. Since every bitstring is just an integer
with base 2, the code consists of integers only.

Pointer to protocol instance
The set Q is implemented as a list. This means that every time a protocol instance is
changed, we first have to remove it from the list and after changing, add it again. To pick
a specific protocol instance, we use its ID to identify its position. By the structure of a list
in EasyCrypt, it is difficult to tie a protocol instance to its ID. Therefore this correlation is
often omitted in a proof. This abundance also impacts the last game hop, which we discuss
now.
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Reference Manual
EasyCrypt is a work in progress and has a fragmentary reference manual. Most commands
are presented in the manual, though there are hidden options for some of those. As an
example the command seq n : (goal) divides one statement about a game into two. The
first one consists of the first n lines of the game and has to show that (goal) holds at
the end of those lines. The second statement starts with (goal), consists of the lines from
n + 1 to end and has to show that the original claim holds. This is also presented in the
reference manual. After asking the developers of EasyCrypt they told me that the command
seq n : (prob)(goal) is applicable to probability statements too, where (prob) consists
of the probabilities for each new sub-statement that is generated (in this case more than
2). This shows that we can not be sure that every limitation stated above is a result of
EasyCrypt’s engine, or a flaw in the currently existing reference manual. It is possible that
in the future most of the problems are going to be fixed.

Errors and bugs
During the process of implementation, sometimes an smt-error occured. The command
smt() uses the automatic prover Alt-Ergo or Z3 for the current goal that we have to prove.
Without additional parameters it automatically stops after a few seconds if it was not able to
solve in this time frame. Some steps in the proof have an error using the smt-command. In the
following we talk about this problem and present a solution. Furthermore consider this can
also be a bug correlated to the virtual machine, its operating system or the automatic provers
themselves, and not EasyCrypt itself. This error consists of breaking the limited time frame
and, if run long enough, crashing the interactive mode. If the command was interrupted,
it would shortly display an “anomaly”-error. After that the goal was proven. This error
only happened at instances where there were a lot of used variables and the statement was
true. Probably it only occurs if the number of variables goes beyond the capacity of the
automatic provers. As an indicator for this theory of cause, consider removing variables
in a statement. This either leads to a wrong claim or a smaller number of variables. At
some points, where the statement still was true, the command smt() worked correctly and
no error occured. To overcome this bug at the other instances, the statements are proven
directly with EasyCrypt-commands only and not calling an automatic prover.
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7. Conclusion

We have shown that the protocol IPsec, using IKEv2, is secure against a real-or-random
attack. To prove this, we took the proof presented by Heussen et al. (2017) and implemented
it in EasyCrypt. Since this lead to several problems, we had to remodel it. This resulted in a
new proof, which we have shown to be true separately. The security against a real-or-random
attack depends on two properties of the used pseudorandom functions. One, they all have to
be a pseudorandom function if the input is swapped. Second, the multiple-primitive game
MP-PRF*-OODH has to have negligible advantage. We also assumed that every party uses a
certificate. This is only done to simplify the proof and its implementation. Since we do not
use this property at any point, the proof should hold without the usage of certificates. We
have to leave this to future work.
Even though we have to rely on several restrictions for the proof verification in EasyCrypt,
most are dispensable from a theoretical standpoint. There are two challenges we did not
address yet. First, EasyCrypt is still in development, therefore error-prone. This downside
only decreases over time until enough proofs are checked thoroughly. Second, we have to
show that the implementation of the proof completely corresponds to the given proof. Unless
this equality holds, we do not gain any advantage. This is the same problem as verifying a
proof, though not as complex. Those two problems are not solved yet.
To fully prove that IPsec is secure in the AKE model, we need to show that is is secure
against an authentication break. Ideally this is also checked by some toolset or automatic
prover in some future work. We also address the usage of EasyCrypt. As a promising toolset
for game-based cryptographic proofs, it does not provide enough usability for general use.
Although it fits nicely to the format of game sequences, it still lacks in several parts. The
main issue is the difficulty of joining the layer of the game and the adversary. This can
definitely be improved on in the future. Ideally speaking, a game based toolset should only
need to construct one single game, where the others are derived from, instead of defining
each game separately. This especially leads to unnecessary complications in larger protocols
and schemes like IPsec.
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A. Code of the states

A.1. First initiator phase
1 proc step1 (pi : protocol_instance, piid : protocol_instance_ID) :

message_transfer * protocol_instance = {
2 var m’,sSPIi,sSPIr,a,kKEi,nNi,hHdr;
3

4 pi <- protocol_set_role(pi)(initiator);
5 sSPIi <$ distr_security_parameter;
6 sSPIr <- 0;
7 pi <- protocol_set_SPIs(pi)(sSPIi,sSPIr);
8 a <$ FDistr.dt;
9 kKEi <- g ^ a;

10

11 if((piid = pick_barstar \/ piid = pick_hatstar) /\ star_initiator =
false) {

12 a <- a_gamma;
13 star_initiator <- true;
14 kKEi <- aA_gamma;
15 pi <- protocol_set_gamma_empty(pi)(true);
16 }
17

18 pi <- protocol_set_key_exchange_secret_a(pi)(a);
19 nNi <$ distr_nonce; pi <- protocol_set_noncei(pi)(nNi);
20 hHdr <- (sSPIi,sSPIr,type_m1);
21 m’ <- (m_not_enc_of (hHdr,kKEi,nNi));
22 pi <- protocol_set_m1(pi)( (hHdr,kKEi,nNi) );
23 pi <- protocol_set_internal_state(pi)(expect_m2);
24 return ((m’,type_m1),pi);
25 }

A.2. First responder phase
1 proc step235 (pi : protocol_instance, piid : protocol_instance_ID, m1

: message_unencrypted) : message_transfer * protocol_instance = {
2 var m’,hHdr,kKEi,nNi,nNr,sSPIi,sSPIr,b,kKEr,dDH;
3 var sSKEYSEED,sSK;
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4

5 pi <- protocol_set_m1(pi)(m1);
6 (hHdr,kKEi,nNi) <- m1;
7 pi <- protocol_set_role(pi)(responder);
8 sSPIi <- hHdr.‘1;
9 sSPIr <$ distr_security_parameter;

10 pi <- protocol_set_SPIs(pi)(sSPIi,sSPIr);
11 pi <- protocol_set_noncei(pi)(nNi);
12 b <$ FDistr.dt;
13 if((piid = pick_barstar \/ piid = pick_hatstar) /\ star_responder =

false) b <- b_gamma;
14 pi <- protocol_set_key_exchange_secret_b(pi)(b);
15 kKEr <- g ^ b;
16 dDH <- kKEi ^ b;
17 pi <- protocol_set_key_exchange(pi)(dDH);
18

19 if((piid = pick_barstar \/ piid = pick_hatstar) /\ star_responder =
false) {

20 star_responder <- true;
21 kKEr <- bB_gamma;
22 pi <- protocol_set_gamma_empty(pi)(true);
23 }
24

25 nNr <$ distr_nonce; pi <- protocol_set_noncer(pi)(nNr);
26 hHdr <- (sSPIi,sSPIr,type_m2);
27 m’ <- (m_not_enc_of (hHdr,kKEr,nNr));
28

29 sSKEYSEED <- F_prf_group(pick_prf)((nNi,nNr),dDH);
30 pi <- protocol_set_keyseed_mod(pi)(false);
31

32 if((piid = pick_barstar \/ piid = pick_hatstar)) {
33 if(gs_a2 = true /\ protocol_get_gamma_empty(pi) = true) {
34 if(kKEi = aA_gamma) {
35 sSKEYSEED <- F_trf(pick_trf_prf)(nNi,nNr);
36 if(hop_A1_A2 = false) pi <- protocol_set_keyseed_mod(pi)(true);
37 }
38 else {
39 sSKEYSEED <- F_prf_group(pick_prf)((nNi,nNr),kKEi ^ b_gamma);
40 }
41 }
42 if(gs_a2_oracle = true /\ protocol_get_gamma_empty(pi) = true) {
43 if(kKEi = aA_gamma) sSKEYSEED <- Oracle_A1_A2.prf_once((nNi,nNr))

;
44 else sSKEYSEED <- Oracle_A1_A2.rodh(pick_prf,kKEi,(nNi,nNr));
45 }
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46 }
47 pi <- protocol_set_keyseed(pi)(sSKEYSEED);
48

49 sSK <- prfplus(sSKEYSEED,(nNi,nNr,sSPIi,sSPIr));
50

51 if(protocol_get_keyseed_mod(pi) = true) {
52 if(gs_a3 = true) sSK <- trf_prfplus(nNi,nNr,sSPIi,sSPIr);
53 if(gs_a3_oracle = true) sSK <- Oracle_A2_A3.prf(pick_prf,(nNi,nNr,

sSPIi,sSPIr));
54 }
55

56 pi <- protocol_set_SK(pi)(sSK);
57 pi <- protocol_set_m2(pi)((hHdr,kKEr,nNr));
58 pi <- protocol_set_internal_state(pi)(expect_m3);
59 return ((m’,type_m2),pi);
60 }

A.3. Second initiator phase
1 proc step456 (pi : protocol_instance, piid : protocol_instance_ID, m2

: message_unencrypted) : message_transfer * protocol_instance = {
2 var m’,dDH,a,hHdr,kKEr,nNr,nNi,sSPIi,sSPIr;
3 var sSKEYSEED,sSK,sSK_d,sSK_ai,sSK_ar,sSK_ei,sSK_er,sSK_pi,sSK_pr;
4 var mMi,iIDi,aAUTHi,cCERTi,t3_enc,t3,m1,skIDi;
5 var keys;
6

7 pi <- protocol_set_m2(pi)( m2 );
8 (hHdr,kKEr,nNr) <- m2;
9 pi <- protocol_set_noncer(pi)(nNr);

10 sSPIi <- protocol_get_SPIi(pi);
11 sSPIr <- hHdr.‘2;
12 a <- protocol_get_key_exchange_secret_a(pi);
13 nNi <- protocol_get_noncei(pi);
14

15 dDH <- kKEr ^ a;
16 pi <- protocol_set_key_exchange(pi)(dDH);
17 sSKEYSEED <- F_prf_group(pick_prf)((nNi,nNr),dDH);
18 pi <- protocol_set_keyseed_mod(pi)(false);
19

20 if(piid = pick_barstar \/ piid = pick_hatstar) {
21 if(gs_a2 = true /\ protocol_get_gamma_empty(pi) = true) {
22 if(kKEr = bB_gamma) {
23 sSKEYSEED <- F_trf(pick_trf_prf)(nNi,nNr);
24 if(hop_A1_A2 = false) pi <- protocol_set_keyseed_mod(pi)(true);
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25 }
26 else sSKEYSEED <- F_prf_group(pick_prf)((nNi,nNr),kKEr ^ a_gamma)

;
27 }
28 if(gs_a2_oracle = true /\ protocol_get_gamma_empty(pi) = true) {
29 if(kKEr = bB_gamma) sSKEYSEED <- Oracle_A1_A2.prf_once((nNi,nNr))

;
30 else sSKEYSEED <- Oracle_A1_A2.lodh(pick_prf,kKEr,(nNi,nNr));
31 }
32 }
33 pi <- protocol_set_keyseed(pi)(sSKEYSEED);
34

35 sSK <- prfplus(sSKEYSEED,(nNi,nNr,sSPIi,sSPIr));
36

37 if(protocol_get_keyseed_mod(pi) = true) {
38 if(gs_a3 = true) sSK <- trf_prfplus(nNi,nNr,sSPIi,sSPIr);
39 if(gs_a3_oracle = true) sSK <- Oracle_A2_A3.prf(pick_prf,(nNi,nNr,

sSPIi,sSPIr));
40 }
41

42 pi <- protocol_set_SK(pi)(sSK);
43

44 (sSK_d,sSK_ai,sSK_ar,sSK_ei,sSK_er,sSK_pi,sSK_pr) <- sSK;
45 iIDi <- protocol_get_party_ID(pi);
46 cCERTi <- protocol_get_certificate(pi);
47 keys <- protocol_get_keypair(pi);
48 skIDi <- keys.‘2;
49 m1 <- protocol_get_m1(pi);
50 mMi <- (m1,nNr, F_prf_keyseed_pid(pick_prf)(sSK_pi,iIDi) );
51 aAUTHi <- sign(skIDi,mMi);
52 t3 <- (iIDi,cCERTi,aAUTHi);
53 t3_enc <- AE_enc((sSK_ei,sSK_ai),hHdr,t3);
54 m’ <- m_enc_of (hHdr,t3_enc);
55

56 pi <- protocol_set_internal_state(pi)(expect_m4);
57 pi <- protocol_set_m3(pi)((hHdr,t3_enc));
58 return ((m’,type_m3),pi);
59 }

A.4. Second responder phase
1 proc step78 (pi : protocol_instance, piid : protocol_instance_ID, m3 :

message_encrypted) : message_transfer * protocol_instance = {
2 var m’,hHdr,nNr,nNi,sSPIi,sSPIr;
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3 var sSK,sSK_d,sSK_ai,sSK_ar,sSK_ei,sSK_er,sSK_pi,sSK_pr;
4 var t3,t3_enc,mMi,mMr,iIDi,iIDr,aAUTHi,aAUTHr,cCERTi,cCERTr,m1,m2,

skIDr,t4,t4_enc;
5 var keys;
6 var bool_vfy,bool_valid : bool;
7 var kKEYMAT,output78;
8

9 pi <- protocol_set_m3(pi)(m3);
10 kKEYMAT <- default_session_key;
11 (hHdr,t3_enc) <- m3;
12 iIDr <- protocol_get_party_ID(pi);
13 m1 <- protocol_get_m1(pi);
14 m2 <- protocol_get_m2(pi);
15 keys <- protocol_get_keypair(pi);
16 skIDr <- keys.‘2;
17 cCERTr <- protocol_get_certificate(pi);
18

19 sSPIi <- protocol_get_SPIi(pi);
20 sSPIr <- protocol_get_SPIr(pi);
21 nNi <- protocol_get_noncei(pi);
22 nNr <- protocol_get_noncer(pi);
23 sSK <- protocol_get_SK(pi);
24 (sSK_d,sSK_ai,sSK_ar,sSK_ei,sSK_er,sSK_pi,sSK_pr) <- sSK;
25

26 t3 <- AE_dec((sSK_ei,sSK_ai),hHdr,t3_enc);
27 (iIDi,cCERTi,aAUTHi) <- t3;
28 mMi <- (m1,nNr, F_prf_keyseed_pid(pick_prf)(sSK_pi,iIDi) );
29 bool_valid <- valid(cCERTi,iIDi,protocol_get_public_key(pi));
30 bool_vfy <- vfy(aAUTHi,mMi);
31 if( bool_valid = false \/ bool_vfy = false) {
32 pi <- protocol_set_accepted(pi)(ABORT);
33 output78 <- ((m_enc_of m3,type_special),pi);
34 }
35 else {
36 kKEYMAT <- prfplus2( sSK_d ,(nNi,nNr));
37

38 if(protocol_get_keyseed_mod(pi) = true) {
39 if(gs_a4 = true) kKEYMAT <- trf_prfplus2(nNi,nNr);
40 if(gs_a4_oracle = true) kKEYMAT <- Oracle_A3_A4.prf(pick_prf, (

nNi,nNr));
41 }
42

43 pi <- protocol_set_accepted(pi)(YES);
44 pi <- protocol_set_partner_party_ID(pi)(iIDi);
45 pi <- protocol_set_session_key(pi)( kKEYMAT );
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46

47 mMr <- (m2,nNi,F_prf_keyseed_pid(pick_prf)(sSK_pr,iIDr));
48 aAUTHr <- sign(skIDr,mMr);
49 t4 <- (iIDr,cCERTr,aAUTHr);
50 t4_enc <- AE_enc((sSK_er,sSK_ar),hHdr,t4);
51 m’ <- (m_enc_of (hHdr,t4_enc));
52 output78 <- ((m’,type_m4),pi);
53 pi <- protocol_set_m4(pi)(hHdr,t4_enc);
54 }
55 pi <- protocol_set_internal_state(pi)(finished);
56

57 return output78;
58 }

A.5. Third initiator phase
1 proc step910 (pi : protocol_instance, piid : protocol_instance_ID, m4

: message_encrypted) : protocol_instance = {
2 var hHdr,nNr,nNi,sSPIi,sSPIr;
3 var sSK,sSK_d,sSK_ai,sSK_ar,sSK_ei,sSK_er,sSK_pi,sSK_pr;
4 var mMr,iIDr,aAUTHr,cCERTr,m1,m2,t4,t4_enc;
5 var bool_vfy,bool_valid : bool;
6 var kKEYMAT;
7

8 pi <- protocol_set_m4(pi)(m4);
9 kKEYMAT <- default_session_key;

10 (hHdr,t4_enc) <- m4;
11 m1 <- protocol_get_m1(pi);
12 m2 <- protocol_get_m2(pi);
13

14 sSPIi <- hHdr.‘1;
15 sSPIr <- hHdr.‘2;
16 nNi <- protocol_get_noncei(pi);
17 nNr <- protocol_get_noncer(pi);
18 sSK <- protocol_get_SK(pi);
19 (sSK_d,sSK_ai,sSK_ar,sSK_ei,sSK_er,sSK_pi,sSK_pr) <- sSK;
20

21 t4 <- AE_dec((sSK_er,sSK_ar),hHdr,t4_enc);
22 (iIDr,cCERTr,aAUTHr) <- t4;
23 mMr <- (m2,nNi, F_prf_keyseed_pid(pick_prf)(sSK_pr,iIDr) );
24 bool_valid <- valid(cCERTr,iIDr,protocol_get_public_key(pi));
25 bool_vfy <- vfy(aAUTHr,mMr);
26 if( bool_valid = false \/ bool_vfy = false) pi <-

protocol_set_accepted(pi)(ABORT);
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27 else {
28 kKEYMAT <- prfplus2( sSK_d ,(nNi,nNr));
29 if(protocol_get_keyseed_mod(pi) = true) {
30 if(gs_a4 = true) kKEYMAT <- trf_prfplus2(nNi,nNr);
31 if(gs_a4_oracle = true) kKEYMAT <- Oracle_A3_A4.prf(pick_prf, (

nNi,nNr));
32 }
33 pi <- protocol_set_accepted(pi)(YES);
34 pi <- protocol_set_partner_party_ID(pi)(iIDr);
35 pi <- protocol_set_session_key(pi)( kKEYMAT );
36 }
37 pi <- protocol_set_internal_state(pi)(finished);
38

39 return pi;
40 }
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